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Discrete time Markov chains

We consider a process which
can be in one of the states
from a set X at any time n.

The states are changed in
steps.

The probability of moving from
a state xi to another state xj is
denoted by pij and called
transition probability.

x1 x2

x3

x4

statestrans. prob.

0.3

0.7

0.5

0.50.6

0.4

0.4

0.6

The process is assumed to be memoryless which means that the transition
probabilities only depend on the current state and not on the history of the
process.

A Markov chain is a sequence of states x1x2 . . . xn . . .
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Examples

1 Switching TV channels. When a program ends the viewer can switch
to another channel with some probability depending on the current
channel. The sequence of channels viewed is then a Markov chain.

2 Social mobility. Let a state be the highest level of education achieved
a person and let the state at the next step be the highest level of
education achieved by her first born child.
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Mathematical model

Let Xn be the random variable denoting the state at time n.

A Markov chain is the sequence (Xn)n∈N of random variables.

Given the first n states, all that can be said about the next state is the
conditional probability

P(Xn+1 = xj |Xn = xi ,Xn−1 = xn−1, . . .X1 = x1)

= P(Xn+1 = xj |Xn = xi ) = pij

which means that the probability of the value of Xn+1 only depends on the
value of Xn and not on the values at earlier stages.
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Transition matrix

Transition probabilities
pij = P(Xn+1 = xj |Xn = xi )
form a matrix P that is called
transition matrix.

Since the chain will be in
exactly one state at time n + 1
the sum of

∑
j pij where j runs

over all elements in X must be
1.

Equivalently, the sum of
elements in each row of a
transition matrix is 1: (row)
stochastic matrix.

x1 x2

x3

x4
0.3

0.7

0.5

0.50.6

0.4

0.4

0.6

Transition matrix:

P =


x1 x2 x3 x4

x1 0 0.3 0 0.7
x2 0 0 0.5 0.5
x3 0 0.6 0.4 0
x4 0 0 0.6 0.4


D. Škulj (UNI-LJ) Imprecise Markov chains 1-6 September 2010 7 / 59



Calculating probabilities at time n

Let (Xi )
n
i=0 be a Markov chain with the transition matrix P .

Let mn denote the probability mass function over the states at time n:
mn

i = mn(xi ) = P(Xn = xi ). It is a vector of probabilities

mn = (mn
1 , . . . ,m

n
s ).

Sometimes the initial state is given, otherwise we have an initial probability
distribution m0 over the states.

The probability mass function corresponding to probability distribution of
Xn is then obtained as

mn = m0Pn,

where Pn denotes the nth matrix power of P and the multiplication is the
usual matrix multiplication.
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Example

Let

P =


0 0.3 0 0.7
0 0 0.5 0.5
0 0.6 0.4 0
0 0 0.6 0.4


and suppose that the
chain starts in x1:

m0 = (1, 0, 0, 0).

Then we have the following sequence of
distributions at the following times:

n mn
1 mn

2 mn
3 mn

4
0 1 0 0 0
1 0 0.3 0 0.7
2 0 0 0.57 0.43
3 0 0.342 0.486 0.172
4 0 0.2916 0.4686 0.2398
5 0 0.28116 0.47712 0.24172
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Long term distributions

Let (Xn)
∞
n=0 be a Markov chain and mn the probability mass functions

corresponding to Xn.

Often we are interested in the limit probability mass function

m∞ = lim
n→∞

mn.

If exists, the above limit may depend on m0 or not.

If the limit m∞ exists for some m0 then we say that the chain converges.

The case where m∞ is independent of m0 is of a special interest in the
analysis of Markov chains.

The limit distribution m∞ is always an invariant (stationary) distribution,
i.e. has the property that m∞P = m∞; and if it is the unique limit
distribution then it is also the unique invariant distribution.
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Examples

1 The Markov chain with the transition matrix

P =


0 0.3 0 0.7
0 0 0.5 0.5
0 0.6 0.4 0
0 0 0.6 0.4


has the unique limit distribution
m∞ = (0, 0.285714, 0.47619, 0.238095).

2 Let P = [ 0 1
1 0 ]. Then the chain starting in x1 moves alternately

between x1 and x2. So it does not converge. However, it does have an
invariant distribution, which is (0.5, 0.5).

3 If P = [ 1 0
0 1 ] then every probability distribution is invariant. The

convergence is therefore not unique.
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The Perron-Frobenius theorem

Theorem (The Perron-Frobenius theorem)
Let P be transition matrix of a Markov chain (Xi ) such that all entries of
P r are strictly positive for some r > 0. Then there is a unique probability
mass function m such that mP = m. Moreover, for every initial m0 we
have that

m = lim
n→∞

m0Pn

and m has all components strictly positive.

Definition
A transition matrix P with the property that P r has all entries strictly
positive for some r > 0 is said to be regular.
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Example

Let

P =

 0 0.5 0.5
0.6 0.4 0
0 0.6 0.4


Then

P2 =

 0.3 0.5 0.2
0.24 0.46 0.3
0.36 0.48 0.16


P is therefore regular and has the unique limit distribution
m∞ = (0.285714, 0.47619, 0.238095).
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Coefficients of ergodicity

Perron-Frobenius theorem gives sufficient conditions for convergence of a
Markov chain.

There are though non-regular Markov chains that also uniquely converge.

A more general way to determine whether a Markov chain is convergent is
by using coefficients of ergodicity.

They give necessary and sufficient conditions for convergence.
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Properties of coefficients of ergodicity

A coefficient of ergodicity τ assigns a real value τ(P) to any transition
matrix P so that

1 0 ≤ τ(P) ≤ 1;
2 τ(P1P2) ≤ τ(P1)τ(P2);
3 τ(P) = 0 if and only if rank(P) = 1 or, equivalently, P = 1v for some

vector v .
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Contraction mappings in euclidean spaces

Let d : Rn × Rn → R be a metric.

A function f : Rn → Rn with the property that

d(f (x), f (y)) ≤ kd(x , y),

where 0 ≤ k < 1 is a constant, is said to be a contraction mapping on the
space Rn.

Every contraction mapping on a metric space has a unique fixed point, i.e.
x such that f (x) = x .
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Coefficients of ergodicity as measures of contraction

Let P be a transition matrix.

The mapping x 7→ xP is a non-expansive mapping.

A coefficient of ergodicity τ(P) is defined as

τ(P) = sup
x ,y

d(xP, yP)

d(x , y)

Different metrics generate different ergodicity coefficients.

Usually the following metric is used

d(x , y) =
1
2

s∑
i=1

|xi − yi |
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Coefficients of ergodicity as measures of contraction

By the definition of ergodicity coefficient we have that

d(xP, yP) ≤ τ(P)d(x , y)

which particularly implies that in the case where τ(P r ) < 1 for some r > 0
the Markov chain with the transition matrix P uniquely converges.

It is also easy to see the converse implication, that unique convergence of a
Markov chain implies the existence of some r > 0 such that τ(P r ) < 1.

Clearly, a regular transition matrix has the coefficient of ergodicity less than
1; however, converse does not necessarily hold. Therefore, coefficients of
ergodicity give stronger conditions for unique convergence than regularity.
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The calculation of the coefficient of ergodicity

Let P be a transition matrix whose ith row is Pi .

Then its coefficient of ergodicity is equal to the maximal distance between
its rows:

τ(P) = max
1≤i<j≤s

d(Pi ,Pj),

where

d(Pi ,Pj) =
1
2

s∑
k=1

|pik − pjk |.
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Example

Let us calculate the coefficient of ergodicity for the matrix:

P =


0 0.3 0 0.7
0 0 0.5 0.5
0 0.6 0.4 0
0 0 0.6 0.4


We have

d(P1,P2) = 0.5 d(P2,P3) = 0.6
d(P1,P3) = 0.7 d(P2,P4) = 0.1
d(P1,P4) = 0.6 d(P3,P4) = 0.6

So τ(P) = 0.7, but P is not regular.
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Models of imprecise probabilities

Imprecision in probability distributions can be modelled in various more or
less general ways:
credal sets are closed convex sets of probability distributions which are

assumed as candidates for the true distribution;
lower and upper expectations can be assigned to any credal set;
lower and upper prevision denote a generalised notion of lower and upper

expectations for a given set of gambles (real valued maps);
they are also interpreted as buying and selling prices
respectively;

interval probabilities are intervals assigned to collections of events; the
interval P(A) = [L(A),U(A)] is assumed to contain the
unknown true probability of A;

coherence assumptions are conditions imposed on lower and upper
previsions (probabilities) in order to ensure a one-to-one
correspondence with credal sets.

D. Škulj (UNI-LJ) Imprecise Markov chains 1-6 September 2010 22 / 59



Credal sets

Credal sets are among most
general imprecise probability
models.

A credal set C is a compact
convex set of probability
distributions.

It can be represented with a
subset in the probability
simplex. x y

z
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Sets of transition matrices with separately specified rows

Let P be a set of matrices
formed so that the ith row is
any element from a credal set
Pi .

Then we say that the set of
matrices has separately
specified rows, which we
usually assume for imprecise
transition matrices.

Example
The convex set of matrices{[

α 1−α
1−α α

]
: α ∈ [0.3, 0.4]

}
does not have separately
specified rows. The set with

the same row sets and that has
separately specifified rows is{[

α 1−α
1−β β

]
: α, β ∈ [0.3, 0.4]

}
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Lower and upper expectations

Given a credal set C the lower expectation with respect to C is a real valued
mapping that assigns a real value ECf to every real valued function f on X
and is defined as

EC[f ] = min
m∈C

Eq[f ]

and similarly the upper expectation is defined with

EC[f ] = max
m∈C

Eq[f ].

Every convex set is fully specified with the corresponding lower or upper
expectation. Also, the lower expectation determines the upper expectation
by

EC[f ] = −EC[−f ].
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Lower and upper expectation operators

Let T i = EPi be the upper expectation corresponding to the ith row of P.

We may define the upper expectation operator

T =


T 1

...

T s

 .
Let a real valued map on X be given. Then

T [f ] =


T 1[f ]

...

T s [f ]


is again a real valued function on X .
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Coherent lower and upper previsions

Let F be a set of real valued mappings X → R.

Then P and P : F → R denote lower and upper prevision respectively.

Coherence ensures the existence of a credal setM(P).

The corresponding upper expectation operator E restricted to F coincides
with P and is called the natural extension of P .

If they are coherent, it does not matter if upper or lower prevision is given,
since always

P(f ) = −P(−f ).
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Lower and upper probabilities as lower-upper previsions

Let A be a collection of
subsets of X .

The interval probability P is
then a special case of
lower-upper prevision defined
on the set of indicator
functions of the sets in A.

Again it does not matter if
upper or lower probability is
given, because of

L(A) = 1− U(Ac).

Example
Let {1, 3} = A ⊆ {1, 2, 3} then
1A is the function
corresponding to the vector
(1, 0, 1).

Indicator functions of sets are
exactly 0-1 valued functions on
X , while the domain of a
general upper prevision P may
contain more general functions,
for instance, f = (1, 0,−2).
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Imprecise Markov chains

Given a Markov chain two things can be imprecise:
Initial distribution can be represented as an imprecise probability

distribution over the set of states using one of the models
described earlier.

Transition matrix: conditional on currently being in a state xi the
probability of transition to a new state is described with the
ith row of the transition matrix, which makes a row a
conditional probability, and can be imprecise as well. If rows
of transition matrix are imprecise then we have an imprecise
transition matrix.
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Markov chains with probability intervals

Before turning to the more general models it is most intuitive to start with
the model with probability intervals.

Recall that the behaviour of a Markov chain (Xn)
∞
n=0 is fully

probabilistically described if the initial and transition probabilities are given.
That is if the following probabilities are known

P(X0 = xi ) = mi

and
P(Xn+1 = xj |Xn = xi ) = pij .

D. Škulj (UNI-LJ) Imprecise Markov chains 1-6 September 2010 31 / 59



The most basic way how imprecision about these probabilities can be
described is by replacing any of the above probabilities by an interval. Thus
we have the following imprecise Markov model:

P(X0 = xi ) = [mi ,mi ]

and
P(Xn+1 = xj |Xn = xi ) = [pij , pij ].

According to the above model, any probability mass function m that
satisfies mi ∈ [mi ,mi ] for every i = 1, . . . , s can be considered as an initial
distribution, and similarly any transition matrix between P and P can be
the transition matrix at some time n.

Thus a set of initial distributions and transition matrices can be assigned to
this model. However, more general sets are possible as well that cannot be
represented with the constraints of this type.
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Markov set chains

A Markov set chain is an imprecise Markov chain where the initial
distribution C0 is an arbitrary compact set of probabilities and the
transition set P is an arbitrary compact set of transition matrices.

The sets of distributions at time n are then obtained as

Cn = C0Pn = Cn−1P = {m0p1p2 . . . pn : m0 ∈ C0, pi ∈ P, 1 ≤ i ≤ n}.

Even if the sets C0 and P are both convex, it is not necessary that Cn are
convex without the assumption that rows of P are separately specified.

This makes general Markov set chains hardly tractable. From now on we
will adopt the assumption that all transition sets have separately specified
rows.
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Markov set chains with separately specified rows

In the case where the rows of the transition set are separately specified, the
sets of distributions Cn are all convex if the initial set and the transition set
are convex.

However, the number of extreme points, and consequently the number of
constraints needed to represent them may increase rapidly with the number
of steps.

Although it is possible to at least obtain approximations with a fixed
number of constraints. One convenient way to obtain such approximations
is by the use of lower or upper expectation operators.
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Approximation with a given set of constraints

x y

z

Figure: Approximation of a credal set with an interval probability
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Imprecise Markov chains with upper expectation operators

An imprecise Markov chain is uniquely described by the imprecise initial
distribution and transition matrix.

If the initial distribution is a credal set (=compact convex set of probability
distributions) and if the transition set has separately specified rows, the
same can be described by the initial upper expectation operator E 0 and the
upper transition operator T .

The question remains how the two can be used to calculate the upper
expectation operators corresponding to credal sets Cn.
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Calculation of upper expectation operators for the sets Cn

Denote the upper expectation operator corresponding to the credal set Cn
by En, and let f : X → R be an arbitrary mapping. Then we have:

Enf = E 0 T . . .T︸ ︷︷ ︸
n instances

f

The above calculation goes as follows: f is a real valued function on X and
T maps it to another real valued function on X and so on n times. Finally
the upper expectation E 0 is applied to obtain Enf which is a single real
number.
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Calculating interval probabilities with upper expectation
operators

Suppose that we have an interval description of an imprecise Markov chain,
with [m,m] and [P,P].

The sets Cn are in general not representable with the same type of
constraints, but we might still be interested in the nearest probability
interval to Cn, i.e.

mi = min
m∈Cn

mi

and
mi = max

m∈Cn
mi .

Let A ⊆ X be any set of states. Then the upper probability Pn(A) equals
to

Pn(A) = sup
m∈Cn

∑
i∈A

mi = En1A = E 0T
n1A.
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Example

Let the following lower and upper transition matrix be given for a Markov
chain with three states:

P =

0.3 0.4 0
0.2 0.6 0.1
0 0.3 0.4

 and P =

0.5 0.5 0.2
0.3 0.7 0.2
0.1 0.4 0.6


Let the initial lower and upper probability interval be

m = [0.1, 0.2, 0.3] and m = [0.3, 0.5, 0.7]
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The lower and upper probabilities after 1, 2 and 3 steps are then:

steps m1 m2 m3 m1 m2 m3

Initial 0.1 0.2 0.3 0.3 0.5 0.7
1 0.07 0.37 0.19 0.3 0.57 0.48
2 0.111 0.426 0.146 0.322 0.594 0.392
3 0.1327 0.446 0.1262 0.3352 0.6032 0.3568
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Graphical representation of the approximating probability
intervals
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Convergence of imprecise Markov chains

Let (Xn) be an imprecise Markov chain with initial credal set C0 and the
corresponding upper expectation operator E 0 and the transition set P with
the upper transition operator T .

Assume that all the above sets are convex and that the transition set has
separately specified rows.

Then we say that the chain converges whenever Enf converges for every f
to some E∞f . Moreover, the limit

E∞f := lim
n→∞

Enf

may be independent of the initial upper expectation E 0, in which case we
have unique convergence.
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Regular imprecise Markov chains

A sufficient condition for unique convergence is an obvious generalisation of
regularity.

Definition
Let P be a transition set. If there is some r > 0 such that the set

P r = {p1p2 . . . pr : pi ∈ P, 1 ≤ i ≤ r}

contains only strictly positive matrices, then we say that P is a regular
transition set.

Theorem
Let P be a closed regular transition set and C0 any closed set of probability
distributions over X . Then the sets Cn = C0Pn converge to a limit set C∞,
independent of the initial set.

Note that convexity of the initial or transition sets is not required in the
last theorem.
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Accessibility relations

Let x and y be any two states in X . If it is possible that the Markov chain
moves from x to y in n steps then we write x n

 y and say that y is
accessible from x in n steps.

If y is accessible from x in any number of steps then we say that y is
accessible from x and write x  y .

If x and y are both accessible from one another then we say that x and y
communicate and write x ! y . The relation! is clearly an equivalence
relation. So the set of states is partitioned in the so called communication
classes.
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Accessibility relations for imprecise Markov chains

Let x and y be two states. Then we say that the state y is accessible from
x in n steps if it is possible to move from x to y . This means that the
upper probability of moving from x to y in n steps is positive.

In terms of upper transition operator this means the following. Suppose
that we are in the state x at time k , which means that we put Ek f = f (x).

The target upper probability is then Pn
xy := EkT n1{y}.
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Classification of communication classes

A communication class D is
maximal if x  y implies y  x for every x ∈ D;
transient if it is not maximal.

If there is a unique maximal class then it is called the top class and
contains the states that are accessible from any other state.

A communication class D is regular under the accessibility relation if there
is some n ∈ N such that for every k ≥ n and for every two elements
x , y ∈ D the relation x k

 y holds.

D. Škulj (UNI-LJ) Imprecise Markov chains 1-6 September 2010 47 / 59



Regularly absorbing imprecise Markov chains

If there is a top class for an accessibility relation  which is regular then
the relation is top class regular.

An imprecise Markov chain whose accessibility relation is top class regular
and for every y ∈ X − R there is some n ∈ N such that T nIR(y) > 0,
where R is the top class, then it is regularly absorbing.

Theorem (Perron-Frobenius theorem, Upper expectation form (by De
Cooman, Hermans and Quaeghebeur))
Let an imprecise Markov chain be regularly absorbing. Then for any initial
upper expectation E 0 , the upper expectations En = E 0T

n converge
pointwise to the same upper expectation E∞:

lim
n→∞

Enf = lim
n→∞

E 0(T
nf ) =: E∞f

for every real valued function f on X .
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Example

Consider the following diagram, where the arrow denotes that it is possible
to move from one state to another.

x1

x3

x2

x4 x5

We have three communication
classes
C1 = {x1, x2},C2 = {x3} and
C3 = {x4, x5}.

C3 is a regular top class: the
chain is regularly absorbing, if
the condition T nIC3(y) is
satisfied for some n ∈ N for all
y ∈ C c

3 .
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Coefficients of ergodicity

More about convergence can be said using coefficients of ergodicity that
besides giving necessary and sufficient conditions also measure the rate of
convergence. That is, how far from the limit distribution is a probability
distribution at some time n.

For a precise transition matrix P the coefficient of ergodicity is calculated
as the maximal distance d(pi , pj) between ith and jth rows.

The coefficients for imprecise Markov chains are based on distances
between “imprecise rows” of the imprecise transition matrix.
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Distances between expectation operators

The distance between upper expectation operators E 1 and E 2 is defined as

d(E 1,E 2) = max
0≤f≤1

|E 1[f ]− E 2[f ]|.

Another coefficient of ergodicity uses the maximal distance between credal
setsM1 andM2:

max
p1∈M1
p2∈M2

d(p1, p2) = max
A⊂S

max{E 1[1A]− E 2[1A],E 2[1A]− E 1[1A]},

where E i and E i are the lower and upper expectation operator of the
credal setMi .

The maximal distance between credal sets is the maximal distance between
any two members of both sets.
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2-alternating interval probabilities

In general it requires a lot of computation to calculate the distance
between two expectation operators.

In the case of 2-alternating (concave) upper probabilities, i.e.

P(A ∪ B) ≤ P(A) + P(B)− P(A ∩ B),

the distance between the corresponding upper expectation operators turns
out to be

d(E 1,E 2) = max
A⊆X
|P1(A)− P2(A)|.

Every upper probability on a probability space with 3 or less elements is
2-alternating.
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The uniform coefficient of ergodicity

Let P be a set of transition matrices and Pi it’s ith row and T i and T i the
corresponding upper and lower expectation operators.

Definition
The uniform coefficient of ergodicity is defined as

τ(P) = sup
p∈P

τ(p).

Alternatively, the uniform coefficient of ergodicity can be calculated as

τ(P) = max
1≤i ,j≤m

max
A⊂S

T i (1A)− T j(1A).
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Convergence

A set P of transition matrices such that τ(P r ) < 1, for some r > 0, is
called product scrambling.

Theorem
Let P be product scrambling. Then

dH(M0Pn,M∞) ≤ Kβn

for some constants K and β; andM∞ is a unique credal set, independent
ofM0.
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The weak coefficient of ergodicity

The uniform coefficient of ergodicity in general gives too strong conditions
for convergence for the case of upper transition operators. Necessary and
sufficient conditions for this case are obtained using the following weaker
coefficient.

Let T be an upper transition operator with rows T i .

The weak coefficient of ergodicity is defined with

ρ(T ) = max
i ,j

d(T i ,T j).
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Convergence

An upper transition operator T such that ρ(T r
) < 1, for some r > 0, is

called weakly product scrambling.

Theorem
Let T be weakly product scrambling. Then

d(E 0T
n
,E∞) ≤ Kβn

for some constants K and β < 1; and E∞ is the unique upper expectation
operator, independent from E 0.
Moreover, T being weakly product scrambling is equivalent to unique
convergence.
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Example

Let X = {x1, x2, x3}. Denote all non-trivial subsets of X in lexicographical
order:

A1 = {x1} A4 = {x3}
A2 = {x2} A5 = {x1, x3}
A3 = {x1, x2} A6 = {x2, x3}

An upper probability is then a vector of values, where ith component
contains the upper probability P(Ai ).

Similarly, an upper transition operator can be represented with a matrix
with n rows and 2n − 2 columns.
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Let

P =

 0.5 0.5 1 0.2 0.6 0.7
0.3 0.7 0.9 0.2 0.4 0.8
0.1 0.4 0.5 0.6 0.7 1


be an upper transition operator. The distances between the upper
expectation operators corresponding to its rows are the maximal absolute
distances between elements in the rows:

d(P1,P2) = 0.2

d(P1,P3) = 0.5

d(P2,P3) = 0.4

The weak coefficient of ergodicity is therefore equal to ρ(P) = 0.5.
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Convergence
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