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Introduction

Bayesian Inference

Bayesian inference is a method of statistical inference in which
we use data to update beliefs about uncertain quantities of
interest.

In this methodology, our uncertainty about any quantities of
interest is quantified by probability distributions

Our updated beliefs about the quantity of interest, θ, given
the data, D, are then obtained via application of Bayes
Theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)
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Introduction

Bayesian Inference

p(θ) represents our beliefs about θ before the data D become
available - the prior for θ.

p(D|θ) is the probability of the data given the uncertain
quantity θ

p(θ|D) represents our beliefs about θ after the data D have
been observed - the posterior for θ

These first three elements are the heart of Bayesian inference,
which can be remembered as

Posterior ∝ Likelihood× Prior
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Introduction

Some interesting questions

We need to specify a full joint probability distribution for all
uncertain quantities

Specifying a probability distribution is equivalent to specifying
an infinite set of moments, do we really believe all of those
implicit specifications?

When the prior and likelihood have specific forms, then this
posterior can be found analytically (conjugacy)

Are those distributions really really conjugate, or are they
just convenient?

In all other cases, we must rely on intensive computational
methods to arrive a distribution for p(θ|D)

If we don’t completely believe our prior specification, what
faith should we have in this posterior?
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Introduction

Difficulties with full Bayes

Working within a fully Bayesian framework, we can encounter
certain difficulties when considering multivariate analyses

Even in small problems, it can be extremely difficult and/or
time-consuming to distil all the prior knowledge into a
meaningful joint prior probability specification;

Even with a specification, the computations for learning from
data become both difficult and computer intensive;

In higher-dimensions the likelihood surface can be very
complicated, making full Bayes calculations potentially highly
non-robust.

Therefore if we are unable to make and analyse full prior
probability specifications, we require methods based around
simpler belief specifications
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Introduction

Expectation as Primitive

Rather than work with probability as the fundamental
quantity of uncertainty, we could use expectation

de Finetti spent most of his life studying subjective
conceptions of probability.

He proposed the use of expectation as the primitive entity on
which to base any analysis, as opposed to probability.

Probabilities (where relevant) enter as derived quantities: they
are the expectations of indicator functions.

Note this asymmetry: if probability is treated as the primitive
quantity then one has to specify (in the continuous case) an
infinite set of probabilities in order to derive a single
expectation.
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Bayes linear

Working with partial belief specifications

In the Bayes linear approach, we follow de Finetti and take
expectation as primitive.

We construct partial belief specifications using only means,
variances and covariances for all uncertain quantities

We may view the Bayes linear approach as

Offering a simple approximation to a full Bayes analysis
Complementary to the full Bayes approach, offering new
interpretative and diagnostic tools
A generalisation of the full Bayes approach where we lift the
restriction of requiring a full probabilistic prior before we may
learn anything from data
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Bayes linear

Features of the Bayes linear approach

Subjective and Bayesian

Belief specifications genuinely correspond to our beliefs

Expectation as primitive

Adjust beliefs by linear fitting rather than conditioning

Computationally straightforward allowing the analysis of larger
and more complex problems

Diagnostic tools are an important part of the approach

How prior beliefs affect conclusions
How beliefs change by the adjustment
How beliefs about observables compare to the observations
themselves

Important special cases - multivariate Gaussian
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Bayes linear

Belief Specification

The Bayes linear approach is subjectivist, and so in any
analysis we need to specify our beliefs over all random
quantities of interest.

However, as we consider expectation as primitive we make our
belief specifications in terms of the low-order moments of the
random quantities of interest.

(If we have beliefs about higher orders we can include these in
the analysis too)

For example, say we are interested in predicting
B = (B1,B2)T from knowledge of D = (D1,D2)T which we
will measure soon, then all we need to specify are E(B),
E(D), Var(B), Var(D) and Cov (B,D).
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Bayes linear

The example: Numbers

Suppose we have a four quantities of interest,
F = (B1,B2,D1,D2)T

We observe values of D = (D1,D2)T , and want to analyse the
effects on our beliefs about B

We have a very simple prior specification:

E(F )i = 0, Var(F )ii = 100,

and we have a correlation structure as follows
B1 B2 D1 D2

B1 1.00 0.56 0.52 0.61
B2 0.56 1.00 0.32 0.98
D1 0.52 0.32 1.00 0.28
D2 0.61 0.98 0.28 1.00
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Bayes linear

Stages of belief analysis

A typical Bayes linear analysis of beliefs proceeds in the following
stages:

1 Specification of prior beliefs

2 Interpret the expected adjustments a priori

3 Given observations, perform and interpret the adjustments

4 Make diagnostic comparisons between actual and expected
beliefs
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Bayes Linear Inference

Bayes Linear Inference

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics



Introduction Bayes linear Bayes Linear Inference Interpretation Diagnostics Further Topics The end

Bayes Linear Inference

Belief Adjustment

We are interested in how our beliefs about B change in the
light of information given by D.

We look among the collection of linear estimates, i.e. those of
form c0 + c1D1 + c2D2, and choose constants c0, c1, c2 to
minimise the prior expected squared error loss in estimating
each of B1 and B2:

E([B1 − c0 − c1D1 − c2D2]2).
The choices of constants may be easily computed, and the
estimators ED(B) = (ED(B1),ED(B2))T turn out to be given
by:

ED(B) = E(B) + Cov (B,D) Var(D)†(D − E(D)).

which we refer to as the adjusted expectation for collection B
given collection D.
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Bayes Linear Inference

Adjusted expectation

The adjusted expectation for collection B given collection D is

ED(B) = E(B) + Cov (B,D) Var(D)†(D − E(D)).

The adjusted version of the B given D is the ‘residual’ vector

AB(D) = B − ED(B).

We can partition the vector B as the sum of two uncorrelated
vectors:

B = ED(B) + AB(D),
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Bayes Linear Inference

Adjusted variance

We partition the variance matrix of B into two variance
components:

Var(B) = Var(ED(B)) + Var(AB(D))

= RVarD(B) + VarD(B)

These are the resolved variance matrix and the adjusted
variance matrix (i.e. explained and residual variation).

The variance matrices are calculated as

VarD(B)= Var(B)− Cov (B,D) Var(D)†Cov (D,B) ,

RVarD(B) = Cov (B,D) Var(D)†Cov (D,B) .

Our variance matrices must be non-negative definite.

We use the Moore-Penrose generalized inverse (A†) to allow
for degeneracy.
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Bayes Linear Inference

Resolution

We summarize the expected effect of the data D for the
adjustment of B by a scale-free measure which we call the
resolution of B induced by D,

RD(B) = 1− VarD(B)

Var(B)
=

Var(ED(B))

Var(B)
.

The resolution lies between 0 and 1, and in general, small
(large) resolutions imply that the information has little
(much) linear predictive value, given the prior specification.

Similar in spirit to an R2 measure for the adjustment.
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Bayes Linear Inference

Example: The Adjustment

We can calculate our adjusted expectations for points B given
D algebraically as:

ED(B1) = 0.381D1 + 0.507D2 + 0

ED(B2) = 0.051D1 + 0.961D2 + 0

We see that B2 is mainly determined by the value of D2 –
unsurprising given the strength of Corr (B2,D2).

We can also calculate the adjusted variance and resolutions

VarD(B) =

(
49.06 -5.83
-5.83 4.64

)
, RD(B) =

(
0.509
0.954

)
We can see that we resolve much of the uncertainty about B2
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Bayes Linear Inference

Example: Variance Partition

We can decompose the prior variance into its resolved and
unresolved portions:

Var(B) = RVarD(B) + VarD(B)(
100.00 55.71

55.71 100

)
=

(
50.94 61.54
61.54 95.36

)
+

(
49.06 -5.83
-5.83 4.64

)
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Bayes Linear Inference

The observed adjustment

Given the observed value d of D, we can calculate the
observed adjusted expectation

Ed(B) = E(B) + Cov (B,D) Var(D)†(d − E(D)).

For our example, we observe d = (−8, 10) and the
corresponding observed adjusted expectations are:

Ed(B) =

(
2.02
9.20

)
Having observed D = d , we notice that our adjusted
expectations have both increased

B1 is weakly correlated with D and so is adjusted only a little,
whereas B2 is strongly correlated to D2 and so its expectation
shifts substantially towards the value d2 = 10
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Interpretation
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Interpretation

Interpretations of belief adjustment

An approximation
If we’re fully Bayesian, then adjusted expectation is a tractable
linear approximation to the full Bayes conditional expectation
Adjusted variance is then an easily-computable upper bound
on the full Bayes preposterior risk, under quadratic loss

An estimator
ED(B) is an ‘estimator’ of the value of B, which combines the
data with simple aspects of our prior beliefs in a plausible
manner
Adjusted variance is then the mean-squared error of the
estimator ED(B)

A primitive
Adjusted expectation is a primitive quantification of further
aspects of our beliefs about B having‘accounted for’ D
Adjusted variance is also a primitive, but applied to the
‘residual variance’ in B having removed the effects of D
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Interpretation

Conditional Expectation

The conditional expectation of B|D is the value you would
specify under the penalty LC =

∑
i cDi [B − E(B|Di )]2

If D is a partition, so Di ∈ {0, 1} and
∑

i Di = 1, then then
the adjusted expectation minimises LA =

∑
i cDi [B − xi ]

2.
So we choose xi to be the conditional expectation, and

ED(B) =
∑

i

E(B|Di )Di

So when D is a partition, the adjusted and conditional
expectations are identical

Adjusted expectation does not require D to be a partition,
and so can be considered as a generalization of conditional
expectation
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Interpretation

Extension to linear combinations

Let 〈B〉 be the set of all linear combinations of B

If X = hTB ∈ 〈B〉, then we can write

E(X ) = hTE(B), Var(X ) = hTVar(B)h.

So by specifying E(B) and Var(B) we have implicitly specified
expectations and variances for all elements of 〈B〉
Similarly, by calculating ED(B) and VarD(B), we have
implicitly calculated the adjustment for all X ∈ 〈B〉
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Diagnostics

Data and Diagnostics

Once data has been observed (first for D and then for B) we
can perform diagnostics.

The Bayes linear methodology has a rich variety of diagnostic
tools available (more than in a fully Bayesian analysis).

We can perform diagnostics on individual random quantities,
or on collections of random quantities.

Three important versions are:

Prior Diagnostics.
Adjustment Diagnostics.
Final Observation Diagnostics.
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Diagnostics

Prior Diagnostics

Each prior belief statement that we make describes our beliefs
about some random quantity.

If we observe that quantity, we may compare what we expect
to happen with what actually happens.

Once we observe the values of D = d , we can check whether
the data is consistent with our prior specifications.

For a single random quantity, we can calculate the
standardized change and the discrepancy:

S(di ) =
di − E(Di )√

Var(Di )
, Dis(d) =

[di − E(Di )]2

Var(Di )
= S(di )

2

E(S(di )) = 0 and Var(S(di )) = 1, so if we observe S(di )
greater than about 3 this suggests an inconsistency.
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Diagnostics

Discrepancy Ratio

For the entire collection, the natural counterpart of the
discrepancy is the Mahalanobis distance:

Dis(d) = (d − E(D))TVar(D)†(d − E(D)).

The prior expected value of Dis(d) is given by
E(Dis(d)) = rk{Var(D)}
NB: if we pretend D is Normal, then Dis(d) would be χ2

We can then normalise the discrepancy, to obtain the
discrepancy ratio for d

Dr(d) =
Dis(d)

rk{Var(D)}
,

which has prior expectation E(Dr(d)) = 1.

Large Dr(d) will of course also suggest inconsistencies.

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics



Introduction Bayes linear Bayes Linear Inference Interpretation Diagnostics Further Topics The end

Diagnostics

Discrepancy Ratio

For the entire collection, the natural counterpart of the
discrepancy is the Mahalanobis distance:

Dis(d) = (d − E(D))TVar(D)†(d − E(D)).

The prior expected value of Dis(d) is given by
E(Dis(d)) = rk{Var(D)}

NB: if we pretend D is Normal, then Dis(d) would be χ2

We can then normalise the discrepancy, to obtain the
discrepancy ratio for d

Dr(d) =
Dis(d)

rk{Var(D)}
,

which has prior expectation E(Dr(d)) = 1.

Large Dr(d) will of course also suggest inconsistencies.

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics



Introduction Bayes linear Bayes Linear Inference Interpretation Diagnostics Further Topics The end

Diagnostics

Discrepancy Ratio

For the entire collection, the natural counterpart of the
discrepancy is the Mahalanobis distance:

Dis(d) = (d − E(D))TVar(D)†(d − E(D)).

The prior expected value of Dis(d) is given by
E(Dis(d)) = rk{Var(D)}
NB: if we pretend D is Normal, then Dis(d) would be χ2

We can then normalise the discrepancy, to obtain the
discrepancy ratio for d

Dr(d) =
Dis(d)

rk{Var(D)}
,

which has prior expectation E(Dr(d)) = 1.

Large Dr(d) will of course also suggest inconsistencies.

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics



Introduction Bayes linear Bayes Linear Inference Interpretation Diagnostics Further Topics The end

Diagnostics

Discrepancy Ratio

For the entire collection, the natural counterpart of the
discrepancy is the Mahalanobis distance:

Dis(d) = (d − E(D))TVar(D)†(d − E(D)).

The prior expected value of Dis(d) is given by
E(Dis(d)) = rk{Var(D)}
NB: if we pretend D is Normal, then Dis(d) would be χ2

We can then normalise the discrepancy, to obtain the
discrepancy ratio for d

Dr(d) =
Dis(d)

rk{Var(D)}
,

which has prior expectation E(Dr(d)) = 1.

Large Dr(d) will of course also suggest inconsistencies.

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics



Introduction Bayes linear Bayes Linear Inference Interpretation Diagnostics Further Topics The end

Diagnostics

Discrepancy Ratio

For the entire collection, the natural counterpart of the
discrepancy is the Mahalanobis distance:

Dis(d) = (d − E(D))TVar(D)†(d − E(D)).

The prior expected value of Dis(d) is given by
E(Dis(d)) = rk{Var(D)}
NB: if we pretend D is Normal, then Dis(d) would be χ2

We can then normalise the discrepancy, to obtain the
discrepancy ratio for d

Dr(d) =
Dis(d)

rk{Var(D)}
,

which has prior expectation E(Dr(d)) = 1.

Large Dr(d) will of course also suggest inconsistencies.

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics



Introduction Bayes linear Bayes Linear Inference Interpretation Diagnostics Further Topics The end

Further Topics

Further Topics

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics



Introduction Bayes linear Bayes Linear Inference Interpretation Diagnostics Further Topics The end

Canonical Analysis

Canonical Analysis

Canonical Analysis

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics



Introduction Bayes linear Bayes Linear Inference Interpretation Diagnostics Further Topics The end

Canonical Analysis

Canonical analysis

Our belief specification for B and our adjustment by D
implies specifications and adjustments for all linear
combinations in 〈B〉.

We can explore the (possibly complex) changes in beliefs
about 〈B〉 induced by the adjustment via a canonical analysis
A key component of the canonical analysis is the resolution
transform matrix defined as

TB:D = Var(B)†Cov (B,D) Var(D)†Cov (D,B) .
TB:D has the property that Var(B)TB:D = RVarD(B)
The eigenstructure of TB:D summarises all the effects of belief
adjustment
Let the normed right eigenvectors of TB:D be v1, . . . , vrB ,
ordered by eigenvalues 1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λrB ≥ 0 and
scaled as vT

i Var(B)vi = 1
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Canonical Analysis

Canonical directions

We define the ith canonical direction as

Yi = vT
i (B − E(B))

The canonical directions have the following properties

E(Yi ) = 0, Var(Yi ) = 1, Corr (Yi ,Yj) = 0

RVarD(Yi ) = λi , VarD(Yi ) = 1− λi ,

So the collection {Y1,Y2, . . .} forms a mutually uncorrelated
‘grid’ of directions over 〈B〉, summarizing the effects of the
adjustment.

Y1 is the quantity we learn most about. Y2 is the quantity we
learn next most about, given that it is uncorrelated with Y1.
Yrk{B} is the quantity we learn least about.

Relationship to canonical correlation analysis (and PCA)
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Canonical Analysis

Canonical properties and system resolution

Each X ∈ 〈B〉 can be expressed using the canonical structure
as

X − E(X ) =
∑

i

Cov (X ,Yi ) Yi ,

and RVarD(X ) =
∑

i

λi (Corr (X ,Yi ))2

We can use this structure to express the resolved uncertainty
for the entire collection 〈B〉 given adjustment by D via the
resolved uncertainty and the system resolution

RUD(B) =
∑

i

λi , RD(B) =
1

rk{B}
∑

i

λi

RD(B) is a scalar summary of the effectiveness of the
adjustment by D for the entire collection 〈B〉
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Partial Analysis

Partial Analysis

Suppose we have already adjusted out beliefs about B given
data, D

Now suppose we get even more data F , how should we further
adjust our beliefs about B?

Suppose we have already adjusted our beliefs about B given
data, H = D ∪ F

What were the individual effects of adjusting by D or F?

To answer either of these questions would require a partial
analysis, where we consider the effects of subsets of the data
on our beliefs
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Partial Analysis

Partial adjustments

If we adjust beliefs sequentially, then we can separate and
scrutinize the adjustments at each stage

We evaluate partial adjustments which represent the change
in adjustment as we accumulate data.

Suppose we intend to adjust our beliefs about B by
observations on D and F , we adjust B by (D ∪ F ) but
separate the effects of the subsets by adjusting B in stages,
first by D, then adding F (or vice versa)

How do we separate the effects of D and F on B?
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Partial Analysis

Separating things out

If D ⊥⊥ F , then adjusted expectations are additive so

ED∪F (B − E(B)) = ED(B − E(B)) + EF (B − E(B))

If D and F are correlated, then we obtain a similar expression
by removing the ‘common variability’ between F and D.

For any D, F , the vectors D and AF (D) = F − ED(F ) are
uncorrelated.

So, for any D, F

ED∪F (B − E(B)) = ED(B − E(B)) + EAF (D)(B − E(B))
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Partial Analysis

The partial adjustment

The partial adjustment of B by F given D, denoted
E[F/D](B), is

E[F/D](B) = ED∪F (B)− ED(B) = EAF (D)(B − E(B))

We can partition the variance in several ways
Var(B) = RVarD(B) + VarD(B)

= RVarD(B) + RVar[F/D](B) + VarD∪F (B)
= RVarD∪F (B) + VarD∪F (B)

The partial resolved variance matrix of B by F given D is

RVar[F/D](B) = Var(E[F/D](B))
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The end

We have seen:

How we represent our beliefs – using expectation as primitive

How we would update our beliefs – the BL adjustment

How we can investigate potential problems in our belief
specification – diagnostics

How we can understand how our beliefs are affected by the
data – canonical analysis

How we would incorporate additional information – partial
analysis
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