Introduction	Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end
00000	00000	0000000	000	000	000000000	

Introduction to Bayes Linear Statistics

Jonathan Cumming, Ian Vernon

3rd September, 2010

- 4 同 6 4 日 6 4 日 6

Ξ.

Introduction	Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end
00000	00000	0000000	000	000	000000000	

Introduction

Introduction

・ロト ・回ト ・ヨト ・ヨト

Introduction ●0000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Introduction						

 Bayesian inference is a method of statistical inference in which we use data to update beliefs about uncertain quantities of interest.

Introduction ●0000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Introduction						

- Bayesian inference is a method of statistical inference in which we use data to update beliefs about uncertain quantities of interest.
- In this methodology, our uncertainty about any quantities of interest is quantified by probability distributions

Introduction ●0000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Introduction						

- Bayesian inference is a method of statistical inference in which we use data to update beliefs about uncertain quantities of interest.
- In this methodology, our uncertainty about any quantities of interest is quantified by probability distributions
- Our updated beliefs about the quantity of interest, θ, given the data, D, are then obtained via application of Bayes Theorem:

$$p(heta|D) = rac{p(D| heta)p(heta)}{p(D)}$$

Introduction 0●000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics	The end
Introduction						

• $p(\theta)$ represents our beliefs about θ before the data D become available - the prior for θ .

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Introduction						

■ $p(\theta)$ represents our beliefs about θ before the data D become available - the prior for θ .

→ □ → → モ → → モ →

3

• $p(D|\theta)$ is the probability of the data given the uncertain quantity θ

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Introduction						

- $p(\theta)$ represents our beliefs about θ before the data D become available the prior for θ .
- $p(D|\theta)$ is the probability of the data given the uncertain quantity θ
- $p(\theta|D)$ represents our beliefs about θ after the data D have been observed the posterior for θ

Introduction	Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end
00000	00000	0000000	000	000	000000000	
Introduction						

- $p(\theta)$ represents our beliefs about θ before the data D become available the prior for θ .
- $p(D|\theta)$ is the probability of the data given the uncertain quantity θ
- $p(\theta|D)$ represents our beliefs about θ after the data D have been observed the posterior for θ
- These first three elements are the heart of Bayesian inference, which can be remembered as

 $\mathsf{Posterior} \propto \mathsf{Likelihood} \times \mathsf{Prior}$

Introduction 00●00	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Introduction						

Some interesting questions

- We need to specify a full joint probability distribution for all uncertain quantities
 - Specifying a probability distribution is equivalent to specifying an infinite set of moments, do we really believe all of those implicit specifications?

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics	The end
Introduction						

Some interesting questions

- We need to specify a full joint probability distribution for all uncertain quantities
 - Specifying a probability distribution is equivalent to specifying an infinite set of moments, do we really believe all of those implicit specifications?
- When the prior and likelihood have specific forms, then this posterior can be found analytically (conjugacy)
 - Are those distributions really REALLY conjugate, or are they just convenient?

Introduction 00●00	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics	The end
Introduction						

Some interesting questions

- We need to specify a full joint probability distribution for all uncertain quantities
 - Specifying a probability distribution is equivalent to specifying an infinite set of moments, do we really believe all of those implicit specifications?
- When the prior and likelihood have specific forms, then this posterior can be found analytically (conjugacy)
 - Are those distributions really REALLY conjugate, or are they just convenient?
- In all other cases, we must rely on intensive computational methods to arrive a distribution for $p(\theta|D)$
 - If we don't completely believe our prior specification, what faith should we have in this posterior?

Introduction 000●0	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Introduction						

 Working within a fully Bayesian framework, we can encounter certain difficulties when considering multivariate analyses

Introduction	Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end
00000	00000	0000000	000	000	000000000	
Introduction						

- Working within a fully Bayesian framework, we can encounter certain difficulties when considering multivariate analyses
- Even in small problems, it can be extremely difficult and/or time-consuming to distil all the prior knowledge into a meaningful joint prior probability specification;

Introduction	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Introduction						

- Working within a fully Bayesian framework, we can encounter certain difficulties when considering multivariate analyses
- Even in small problems, it can be extremely difficult and/or time-consuming to distil all the prior knowledge into a meaningful joint prior probability specification;
- Even with a specification, the computations for learning from data become both difficult and computer intensive;

Introduction 000●0	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics	The end
Introduction						

- Working within a fully Bayesian framework, we can encounter certain difficulties when considering multivariate analyses
- Even in small problems, it can be extremely difficult and/or time-consuming to distil all the prior knowledge into a meaningful joint prior probability specification;
- Even with a specification, the computations for learning from data become both difficult and computer intensive;
- In higher-dimensions the likelihood surface can be very complicated, making full Bayes calculations potentially highly non-robust.

Introduction	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Introduction						

- Working within a fully Bayesian framework, we can encounter certain difficulties when considering multivariate analyses
- Even in small problems, it can be extremely difficult and/or time-consuming to distil all the prior knowledge into a meaningful joint prior probability specification;
- Even with a specification, the computations for learning from data become both difficult and computer intensive;
- In higher-dimensions the likelihood surface can be very complicated, making full Bayes calculations potentially highly non-robust.
- Therefore if we are unable to make and analyse full prior probability specifications, we require methods based around simpler belief specifications

Introduction 0000●	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Introduction						

- Rather than work with probability as the fundamental quantity of uncertainty, we could use expectation
- de Finetti spent most of his life studying subjective conceptions of probability.
- He proposed the use of expectation as the primitive entity on which to base any analysis, as opposed to probability.

Introduction 0000●	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Introduction						

- Rather than work with probability as the fundamental quantity of uncertainty, we could use expectation
- de Finetti spent most of his life studying subjective conceptions of probability.
- He proposed the use of expectation as the primitive entity on which to base any analysis, as opposed to probability.
- Probabilities (where relevant) enter as derived quantities: they are the expectations of indicator functions.

Introduction	Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end
00000	00000	0000000	000	000	000000000	
Introduction						

- Rather than work with probability as the fundamental quantity of uncertainty, we could use expectation
- de Finetti spent most of his life studying subjective conceptions of probability.
- He proposed the use of expectation as the primitive entity on which to base any analysis, as opposed to probability.
- Probabilities (where relevant) enter as derived quantities: they are the expectations of indicator functions.
- Note this asymmetry: if probability is treated as the primitive quantity then one has to specify (in the continuous case) an infinite set of probabilities in order to derive a single expectation.

Introduction	Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end
00000	00000	0000000	000	000	000000000	
Introduction						

- Rather than work with probability as the fundamental quantity of uncertainty, we could use expectation
- de Finetti spent most of his life studying subjective conceptions of probability.
- He proposed the use of expectation as the primitive entity on which to base any analysis, as opposed to probability.
- Probabilities (where relevant) enter as derived quantities: they are the expectations of indicator functions.
- Note this asymmetry: if probability is treated as the primitive quantity then one has to specify (in the continuous case) an infinite set of probabilities in order to derive a single expectation.

Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end

Bayes linear

Bayes linear

・ロト ・回ト ・ヨト ・ヨト

ъ.

Introduction 00000	Bayes linear ●0000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

Working with partial belief specifications

 In the Bayes linear approach, we follow de Finetti and take expectation as primitive.

Introduction 00000	Bayes linear ●0000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

Working with partial belief specifications

- In the Bayes linear approach, we follow de Finetti and take expectation as primitive.
- We construct partial belief specifications using only means, variances and covariances for all uncertain quantities

Introduction 00000	Bayes linear ●0000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

Working with partial belief specifications

- In the Bayes linear approach, we follow de Finetti and take expectation as primitive.
- We construct partial belief specifications using only means, variances and covariances for all uncertain quantities
- We may view the Bayes linear approach as
 - Offering a simple approximation to a full Bayes analysis
 - Complementary to the full Bayes approach, offering new interpretative and diagnostic tools
 - A generalisation of the full Bayes approach where we lift the restriction of requiring a full probabilistic prior before we may learn anything from data

Introduction 00000	Bayes linear 0●000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

Subjective and Bayesian

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 = めの()

Introduction 00000	Bayes linear 0●000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

- Subjective and Bayesian
- Belief specifications genuinely correspond to our beliefs

Introduction 00000	Bayes linear 0●000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

- Subjective and Bayesian
- Belief specifications genuinely correspond to our beliefs
- Expectation as primitive

Introduction 00000	Bayes linear 0●000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics	The end
Bayes linear						

- Subjective and Bayesian
- Belief specifications genuinely correspond to our beliefs
- Expectation as primitive
- Adjust beliefs by linear fitting rather than conditioning

Introduction 00000	Bayes linear 0●000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

- Subjective and Bayesian
- Belief specifications genuinely correspond to our beliefs
- Expectation as primitive
- Adjust beliefs by linear fitting rather than conditioning
- Computationally straightforward allowing the analysis of larger and more complex problems

Introduction 00000	Bayes linear 0●000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Baves linear						

- Subjective and Bayesian
- Belief specifications genuinely correspond to our beliefs
- Expectation as primitive
- Adjust beliefs by linear fitting rather than conditioning
- Computationally straightforward allowing the analysis of larger and more complex problems
- Diagnostic tools are an important part of the approach
 - How prior beliefs affect conclusions
 - How beliefs change by the adjustment
 - How beliefs about observables compare to the observations themselves

Introduction 00000	Bayes linear 0●000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Baves linear						

- Subjective and Bayesian
- Belief specifications genuinely correspond to our beliefs
- Expectation as primitive
- Adjust beliefs by linear fitting rather than conditioning
- Computationally straightforward allowing the analysis of larger and more complex problems
- Diagnostic tools are an important part of the approach
 - How prior beliefs affect conclusions
 - How beliefs change by the adjustment
 - How beliefs about observables compare to the observations themselves

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Important special cases - multivariate Gaussian

Introduction 00000	Bayes linear 00●00	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

 The Bayes linear approach is subjectivist, and so in any analysis we need to specify our beliefs over all random quantities of interest.

Introduction 00000	Bayes linear 00●00	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

- The Bayes linear approach is subjectivist, and so in any analysis we need to specify our beliefs over all random quantities of interest.
- However, as we consider expectation as primitive we make our belief specifications in terms of the low-order moments of the random quantities of interest.

Introduction 00000	Bayes linear 00●00	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

- The Bayes linear approach is subjectivist, and so in any analysis we need to specify our beliefs over all random quantities of interest.
- However, as we consider expectation as primitive we make our belief specifications in terms of the low-order moments of the random quantities of interest.
- (If we have beliefs about higher orders we can include these in the analysis too)

Introduction 00000	Bayes linear 00●00	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

- The Bayes linear approach is subjectivist, and so in any analysis we need to specify our beliefs over all random quantities of interest.
- However, as we consider expectation as primitive we make our belief specifications in terms of the low-order moments of the random quantities of interest.
- (If we have beliefs about higher orders we can include these in the analysis too)
- For example, say we are interested in predicting $B = (B_1, B_2)^T$ from knowledge of $D = (D_1, D_2)^T$ which we will measure soon, then all we need to specify are E(B), E(D), Var(B), Var(D) and Cov(B, D).

3

Introduction 00000	Bayes linear 000●0	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

The example: Numbers

Suppose we have a four quantities of interest,

$$F = (B_1, B_2, D_1, D_2)^T$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ 釣風の

Introduction 00000	Bayes linear 000●0	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

The example: Numbers

- Suppose we have a four quantities of interest,
 - $\boldsymbol{F} = (\boldsymbol{B}_1, \boldsymbol{B}_2, \boldsymbol{D}_1, \boldsymbol{D}_2)^T$
- We observe values of $D = (D_1, D_2)^T$, and want to analyse the effects on our beliefs about B

Introduction 00000	Bayes linear 000●0	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

The example: Numbers

- Suppose we have a four quantities of interest, $F = (B_1, B_2, D_1, D_2)^T$
- We observe values of $D = (D_1, D_2)^T$, and want to analyse the effects on our beliefs about B
- We have a very simple prior specification:

$$\mathbf{E}(F)_i = 0, \qquad \qquad \mathbf{Var}(F)_{ii} = 100,$$

and we have a correlation structure as follows

	B_1	B_2	D_1	D_2
B_1	1.00	0.56	0.52	0.61
B_2	0.56	1.00	0.32	0.98
D_1	0.52	0.32	1.00	0.28
D_2	0.61	0.98	0.28	1.00

イロト イポト イヨト イヨト

3

Introduction 00000	Bayes linear 0000●	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes linear						

Stages of belief analysis

A typical Bayes linear analysis of beliefs proceeds in the following stages:

- **1** Specification of prior beliefs
- 2 Interpret the expected adjustments a priori
- **3** Given observations, perform and interpret the adjustments
- Make diagnostic comparisons between actual and expected beliefs

Bayes linear	Bayes Linear Inference	Diagnostics	The end

Bayes Linear Inference

Bayes Linear Inference

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference ●000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes Linear Int	ference					

Belief Adjustment

• We are interested in how our beliefs about *B* change in the light of information given by *D*.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference ●000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes Linear Inf	erence					

Belief Adjustment

- We are interested in how our beliefs about *B* change in the light of information given by *D*.
- We look among the collection of linear estimates, i.e. those of form c₀ + c₁D₁ + c₂D₂, and choose constants c₀, c₁, c₂ to minimise the prior expected squared error loss in estimating each of B₁ and B₂:

$$E([B_1-c_0-c_1D_1-c_2D_2]^2).$$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference ●000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes Linear Inf	erence					

Belief Adjustment

- We are interested in how our beliefs about *B* change in the light of information given by *D*.
- We look among the collection of linear estimates, i.e. those of form c₀ + c₁D₁ + c₂D₂, and choose constants c₀, c₁, c₂ to minimise the prior expected squared error loss in estimating each of B₁ and B₂:

$$E([B_1 - c_0 - c_1D_1 - c_2D_2]^2).$$

The choices of constants may be easily computed, and the estimators E_D(B) = (E_D(B₁), E_D(B₂))^T turn out to be given by:

 $\operatorname{E}_D(B) = \operatorname{E}(B) + \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger}(D - \operatorname{E}(D)).$

which we refer to as the adjusted expectation for collection B given collection D.

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0●00000	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end		
Bayes Linear Inference								
Adjuste	ed expec	tation						

• The adjusted expectation for collection B given collection D is

 $\operatorname{E}_D(B) = \operatorname{E}(B) + \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger}(D - \operatorname{E}(D)).$

▲ロ▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0●00000	Interpretation	Diagnostics 000	Further Topics 000000000	The end		
Bayes Linear Inference								
Adjuste	ed expec	tation						

■ The adjusted expectation for collection *B* given collection *D* is

 $\operatorname{E}_D(B) = \operatorname{E}(B) + \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger}(D - \operatorname{E}(D)).$

■ The adjusted version of the *B* given *D* is the 'residual' vector

 $\mathbb{A}_B(D) = B - \mathbb{E}_D(B).$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0●00000	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end
Bayes Linear In	ference					
A 11 .						

Adjusted expectation

■ The adjusted expectation for collection *B* given collection *D* is

 $\operatorname{E}_D(B) = \operatorname{E}(B) + \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger}(D - \operatorname{E}(D)).$

• The adjusted version of the B given D is the 'residual' vector

$$\mathbb{A}_B(D)=B-\mathrm{E}_D(B).$$

We can partition the vector B as the sum of two uncorrelated vectors:

$$B = \mathrm{E}_D(B) + \mathbb{A}_B(D),$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 00●0000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes Linear Inf	erence					

• We partition the variance matrix of *B* into two variance components:

$$\operatorname{Var}(B) = \operatorname{Var}(\operatorname{E}_D(B)) + \operatorname{Var}(\mathbb{A}_B(D))$$

= $\operatorname{RVar}_D(B) + \operatorname{Var}_D(B)$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 00●0000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes Linear Inf	erence					

• We partition the variance matrix of *B* into two variance components:

$$\operatorname{Var}(B) = \operatorname{Var}(\operatorname{E}_D(B)) + \operatorname{Var}(\mathbb{A}_B(D))$$

= $\operatorname{RVar}_D(B) + \operatorname{Var}_D(B)$

These are the resolved variance matrix and the adjusted variance matrix (i.e. explained and residual variation).

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 00●0000	Interpretation	Diagnostics 000	Further Topics 000000000	The end	
Bayes Linear Inference							

• We partition the variance matrix of *B* into two variance components:

$$\operatorname{Var}(B) = \operatorname{Var}(\operatorname{E}_D(B)) + \operatorname{Var}(\mathbb{A}_B(D))$$

= $\operatorname{RVar}_D(B) + \operatorname{Var}_D(B)$

- These are the resolved variance matrix and the adjusted variance matrix (i.e. explained and residual variation).
- The variance matrices are calculated as

$$\begin{split} \operatorname{Var}_D(B) &= \operatorname{Var}(B) - \operatorname{Cov}\left(B, D\right) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}\left(D, B\right), \\ \operatorname{RVar}_D(B) &= \operatorname{Cov}\left(B, D\right) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}\left(D, B\right). \end{split}$$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 00●0000	Interpretation	Diagnostics 000	Further Topics 000000000	The end	
Bayes Linear Inference							

• We partition the variance matrix of *B* into two variance components:

$$\operatorname{Var}(B) = \operatorname{Var}(\operatorname{E}_D(B)) + \operatorname{Var}(\mathbb{A}_B(D))$$

= $\operatorname{RVar}_D(B) + \operatorname{Var}_D(B)$

- These are the resolved variance matrix and the adjusted variance matrix (i.e. explained and residual variation).
- The variance matrices are calculated as

 $\operatorname{Var}_{D}(B) = \operatorname{Var}(B) - \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}(D, B),$ $\operatorname{RVar}_{D}(B) = \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}(D, B).$ • Our variance matrices must be non-negative definite.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 00●0000	Interpretation	Diagnostics 000	Further Topics 000000000	The end	
Bayes Linear Inference							

• We partition the variance matrix of *B* into two variance components:

$$\operatorname{Var}(B) = \operatorname{Var}(\operatorname{E}_D(B)) + \operatorname{Var}(\mathbb{A}_B(D))$$

= $\operatorname{RVar}_D(B) + \operatorname{Var}_D(B)$

- These are the resolved variance matrix and the adjusted variance matrix (i.e. explained and residual variation).
- The variance matrices are calculated as

 $\operatorname{Var}_{D}(B) = \operatorname{Var}(B) - \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}(D, B),$ $\operatorname{RVar}_{D}(B) = \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}(D, B).$

- Our variance matrices must be non-negative definite.
- We use the Moore-Penrose generalized inverse (A[†]) to allow for degeneracy.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 000●000	Interpretation	Diagnostics 000	Further Topics 000000000	The end		
Bayes Linear Inference								
Resolut	tion							

We summarize the expected effect of the data D for the adjustment of B by a scale-free measure which we call the resolution of B induced by D,

$$\operatorname{R}_{D}(B) = 1 - \frac{\operatorname{Var}_{D}(B)}{\operatorname{Var}(B)} = \frac{\operatorname{Var}(\operatorname{E}_{D}(B))}{\operatorname{Var}(B)}.$$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 000●000	Interpretation	Diagnostics 000	Further Topics 000000000	The end			
Bayes Linear Inference									
Resolut	tion								

We summarize the expected effect of the data D for the adjustment of B by a scale-free measure which we call the resolution of B induced by D,

$$\operatorname{R}_D(B) = 1 - \frac{\operatorname{Var}_D(B)}{\operatorname{Var}(B)} = \frac{\operatorname{Var}(\operatorname{E}_D(B))}{\operatorname{Var}(B)}.$$

 The resolution lies between 0 and 1, and in general, small (large) resolutions imply that the information has little (much) linear predictive value, given the prior specification.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 000●000	Interpretation	Diagnostics 000	Further Topics 000000000	The end			
Bayes Linear Inference									
Resolut	tion								

We summarize the expected effect of the data D for the adjustment of B by a scale-free measure which we call the resolution of B induced by D,

$$\operatorname{R}_D(B) = 1 - \frac{\operatorname{Var}_D(B)}{\operatorname{Var}(B)} = \frac{\operatorname{Var}(\operatorname{E}_D(B))}{\operatorname{Var}(B)}.$$

- The resolution lies between 0 and 1, and in general, small (large) resolutions imply that the information has little (much) linear predictive value, given the prior specification.
- Similar in spirit to an R^2 measure for the adjustment.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000●00	Interpretation	Diagnostics 000	Further Topics 000000000	The end	
Bayes Linear Inference							

Example: The Adjustment

 We can calculate our adjusted expectations for points B given D algebraically as:

$$E_D(B_1) = 0.381D_1 + 0.507D_2 + 0$$

$$E_D(B_2) = 0.051D_1 + 0.961D_2 + 0$$

< 回 > < 三 > < 三 >

2

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000●00	Interpretation	Diagnostics 000	Further Topics 000000000	The end	
Bayes Linear Inference							

Example: The Adjustment

We can calculate our adjusted expectations for points B given D algebraically as:

$$E_D(B_1) = 0.381D_1 + 0.507D_2 + 0$$

$$E_D(B_2) = 0.051D_1 + 0.961D_2 + 0$$

■ We see that *B*₂ is mainly determined by the value of *D*₂ – unsurprising given the strength of Corr (*B*₂, *D*₂).

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000●00	Interpretation	Diagnostics 000	Further Topics 000000000	The end	
Bayes Linear Inference							

Example: The Adjustment

We can calculate our adjusted expectations for points B given D algebraically as:

$$E_D(B_1) = 0.381D_1 + 0.507D_2 + 0$$

$$E_D(B_2) = 0.051D_1 + 0.961D_2 + 0$$

- We see that *B*₂ is mainly determined by the value of *D*₂ unsurprising given the strength of Corr (*B*₂, *D*₂).
- We can also calculate the adjusted variance and resolutions

$$\operatorname{Var}_{D}(B) = \begin{pmatrix} 49.06 & -5.83 \\ -5.83 & 4.64 \end{pmatrix}, \quad \operatorname{R}_{D}(B) = \begin{pmatrix} 0.509 \\ 0.954 \end{pmatrix}$$

• We can see that we resolve much of the uncertainty about B_2

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 00000●0	Interpretation 000	Diagnostics 000	Further Topics	The end
Bayes Linear In	ference					

Example: Variance Partition

We can decompose the prior variance into its resolved and unresolved portions:

$$\begin{aligned} & \operatorname{Var}(B) = \operatorname{RVar}_D(B) & + \operatorname{Var}_D(B) \\ \begin{pmatrix} 100.00 & 55.71 \\ 55.71 & 100 \end{pmatrix} = \begin{pmatrix} 50.94 & 61.54 \\ 61.54 & 95.36 \end{pmatrix} & + \begin{pmatrix} 49.06 & -5.83 \\ -5.83 & 4.64 \end{pmatrix} \end{aligned}$$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 000000●	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes Linear In	ference					

The observed adjustment

Given the observed value d of D, we can calculate the observed adjusted expectation

 $\mathrm{E}_{d}(B) = \mathrm{E}(B) + \mathrm{Cov}(B, D) \operatorname{Var}(D)^{\dagger}(d - \mathrm{E}(D)).$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 000000●	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes Linear In	ference					

The observed adjustment

Given the observed value d of D, we can calculate the observed adjusted expectation

 $\operatorname{E}_d(B) = \operatorname{E}(B) + \operatorname{Cov}(B, D)\operatorname{Var}(D)^{\dagger}(d - \operatorname{E}(D)).$

■ For our example, we observe *d* = (−8, 10) and the corresponding observed adjusted expectations are:

$$\mathbf{E}_d(B) = \left(\begin{array}{c} 2.02\\ 9.20 \end{array}\right)$$

Having observed D = d, we notice that our adjusted expectations have both increased

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 000000●	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Bayes Linear In	ference					

The observed adjustment

 Given the observed value d of D, we can calculate the observed adjusted expectation

 $\operatorname{E}_d(B) = \operatorname{E}(B) + \operatorname{Cov}(B, D)\operatorname{Var}(D)^{\dagger}(d - \operatorname{E}(D)).$

■ For our example, we observe *d* = (−8, 10) and the corresponding observed adjusted expectations are:

$$\mathbf{E}_d(B) = \left(\begin{array}{c} 2.02\\ 9.20 \end{array}\right)$$

- Having observed D = d, we notice that our adjusted expectations have both increased
- B_1 is weakly correlated with D and so is adjusted only a little, whereas B_2 is strongly correlated to D_2 and so its expectation shifts substantially towards the value $d_2 = 10$

Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end

Interpretation

Interpretation

・ロト ・回ト ・ヨト ・ヨト

2

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation ●00	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

Interpretations of belief adjustment

An approximation

- If we're fully Bayesian, then adjusted expectation is a tractable linear approximation to the full Bayes conditional expectation
- Adjusted variance is then an easily-computable upper bound on the full Bayes preposterior risk, under quadratic loss

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation •00	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

Interpretations of belief adjustment

An approximation

- If we're fully Bayesian, then adjusted expectation is a tractable linear approximation to the full Bayes conditional expectation
- Adjusted variance is then an easily-computable upper bound on the full Bayes preposterior risk, under quadratic loss
- An estimator
 - E_D(B) is an 'estimator' of the value of B, which combines the data with simple aspects of our prior beliefs in a plausible manner
 - Adjusted variance is then the mean-squared error of the estimator $E_D(B)$

Introduction	Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end
00000	00000	0000000	●00	000	000000000	
Interpretation						

Interpretations of belief adjustment

An approximation

- If we're fully Bayesian, then adjusted expectation is a tractable linear approximation to the full Bayes conditional expectation
- Adjusted variance is then an easily-computable upper bound on the full Bayes preposterior risk, under quadratic loss
- An estimator
 - E_D(B) is an 'estimator' of the value of B, which combines the data with simple aspects of our prior beliefs in a plausible manner
 - Adjusted variance is then the mean-squared error of the estimator $E_D(B)$
- A primitive
 - Adjusted expectation is a primitive quantification of further aspects of our beliefs about *B* having 'accounted for' *D*
 - Adjusted variance is also a primitive, but applied to the 'residual variance' in *B* having removed the effects of *D* → .

Jonathan Cumming, Ian Vernon

Introduction to Bayes Linear Statistics

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

• The conditional expectation of B|D is the value you would specify under the penalty $L_C = \sum_i cD_i[B - E(B|D_i)]^2$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

- The conditional expectation of B|D is the value you would specify under the penalty $L_C = \sum_i cD_i[B - E(B|D_i)]^2$
- If *D* is a partition, so $D_i \in \{0, 1\}$ and $\sum_i D_i = 1$, then then the adjusted expectation minimises $L_A = \sum_i cD_i[B - x_i]^2$. So we choose x_i to be the conditional expectation, and

$$\mathrm{E}_{D}(B) = \sum_{i} \mathrm{E}(B|D_{i})D_{i}$$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

- The conditional expectation of B|D is the value you would specify under the penalty $L_C = \sum_i cD_i[B - E(B|D_i)]^2$
- If *D* is a partition, so $D_i \in \{0, 1\}$ and $\sum_i D_i = 1$, then then the adjusted expectation minimises $L_A = \sum_i cD_i[B - x_i]^2$. So we choose x_i to be the conditional expectation, and

$$\mathrm{E}_{D}(B) = \sum_{i} \mathrm{E}(B|D_{i})D_{i}$$

(日) (同) (三) (三)

э

So when D is a partition, the adjusted and conditional expectations are identical

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

- The conditional expectation of B|D is the value you would specify under the penalty $L_C = \sum_i cD_i[B - E(B|D_i)]^2$
- If *D* is a partition, so $D_i \in \{0, 1\}$ and $\sum_i D_i = 1$, then then the adjusted expectation minimises $L_A = \sum_i cD_i[B - x_i]^2$. So we choose x_i to be the conditional expectation, and

$$\mathrm{E}_{D}(B) = \sum_{i} \mathrm{E}(B|D_{i})D_{i}$$

- So when D is a partition, the adjusted and conditional expectations are identical
- Adjusted expectation does not require D to be a partition, and so can be considered as a generalization of conditional expectation

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

Extension to linear combinations

• Let $\langle B \rangle$ be the set of all linear combinations of B

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

Extension to linear combinations

Let ⟨B⟩ be the set of all linear combinations of B
If X = h^TB ∈ ⟨B⟩, then we can write

$$\mathbf{E}(X) = h^T \mathbf{E}(B), \ \mathrm{Var}(X) = h^T \mathrm{Var}(B)h.$$

<ロ> <同> <同> < 回> < 回>

3

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

Extension to linear combinations

- Let $\langle B \rangle$ be the set of all linear combinations of B
- If $X = h^T B \in \langle B \rangle$, then we can write

$$E(X) = h^T E(B), Var(X) = h^T Var(B)h.$$

■ So by specifying E(B) and Var(B) we have implicitly specified expectations and variances for all elements of ⟨B⟩

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics 000000000	The end
Interpretation						

Extension to linear combinations

- Let $\langle B \rangle$ be the set of all linear combinations of B
- If $X = h^T B \in \langle B \rangle$, then we can write

 $E(X) = h^T E(B), Var(X) = h^T Var(B)h.$

- So by specifying E(B) and Var(B) we have implicitly specified expectations and variances for all elements of ⟨B⟩
- Similarly, by calculating $E_D(B)$ and $Var_D(B)$, we have implicitly calculated the adjustment for all $X \in \langle B \rangle$

Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end

Diagnostics

Diagnostics

・ロン ・回 と ・ ヨ と ・ ヨ と …

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics ●00	Further Topics 000000000	The end
Diagnostics						

Once data has been observed (first for D and then for B) we can perform diagnostics.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics ●00	Further Topics 000000000	The end
Diagnostics						

- Once data has been observed (first for D and then for B) we can perform diagnostics.
- The Bayes linear methodology has a rich variety of diagnostic tools available (more than in a fully Bayesian analysis).

A (1) > A (1) > A

э

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics ●00	Further Topics 000000000	The end
Diagnostics						

- Once data has been observed (first for D and then for B) we can perform diagnostics.
- The Bayes linear methodology has a rich variety of diagnostic tools available (more than in a fully Bayesian analysis).
- We can perform diagnostics on individual random quantities, or on collections of random quantities.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics ●00	Further Topics 000000000	The end
Diagnostics						

- Once data has been observed (first for D and then for B) we can perform diagnostics.
- The Bayes linear methodology has a rich variety of diagnostic tools available (more than in a fully Bayesian analysis).
- We can perform diagnostics on individual random quantities, or on collections of random quantities.

- < 同 > < 三 > < 三 >

э

- Three important versions are:
 - Prior Diagnostics.
 - Adjustment Diagnostics.
 - Final Observation Diagnostics.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 0●0	Further Topics 000000000	The end
Diagnostics						
Prior D	liagnosti	CS				

 Each prior belief statement that we make describes our beliefs about some random quantity.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 0●0	Further Topics 000000000	The end
Diagnostics						

- Each prior belief statement that we make describes our beliefs about some random quantity.
- If we observe that quantity, we may compare what we expect to happen with what actually happens.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 0●0	Further Topics 000000000	The end
Diagnostics						

- Each prior belief statement that we make describes our beliefs about some random quantity.
- If we observe that quantity, we may compare what we expect to happen with what actually happens.
- Once we observe the values of D = d, we can check whether the data is consistent with our prior specifications.

< 回 > < 三 > < 三 >

э

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 0●0	Further Topics 000000000	The end
Diagnostics						

- Each prior belief statement that we make describes our beliefs about some random quantity.
- If we observe that quantity, we may compare what we expect to happen with what actually happens.
- Once we observe the values of D = d, we can check whether the data is consistent with our prior specifications.
- For a single random quantity, we can calculate the standardized change and the discrepancy:

$$\mathrm{S}(d_i) = rac{d_i - \mathrm{E}(D_i)}{\sqrt{\mathrm{Var}(D_i)}}, \quad \mathrm{Dis}(d) = rac{[d_i - \mathrm{E}(D_i)]^2}{\mathrm{Var}(D_i)} = \mathrm{S}(d_i)^2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 0●0	Further Topics 000000000	The end
Diagnostics						

- Each prior belief statement that we make describes our beliefs about some random quantity.
- If we observe that quantity, we may compare what we expect to happen with what actually happens.
- Once we observe the values of D = d, we can check whether the data is consistent with our prior specifications.
- For a single random quantity, we can calculate the standardized change and the discrepancy:

$$S(d_i) = \frac{d_i - E(D_i)}{\sqrt{Var(D_i)}}, \quad Dis(d) = \frac{[d_i - E(D_i)]^2}{Var(D_i)} = S(d_i)^2$$

$$E(S(d_i)) = 0 \text{ and } Var(S(d_i)) = 1, \text{ so if we observe } S(d_i)$$
greater than about 3 this suggests an inconsistency.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 00●	Further Topics 000000000	The end
Diagnostics						

For the entire collection, the natural counterpart of the discrepancy is the Mahalanobis distance:

 $\operatorname{Dis}(d) = (d - \operatorname{E}(D))^{\mathsf{T}}\operatorname{Var}(D)^{\dagger}(d - \operatorname{E}(D)).$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 00●	Further Topics 000000000	The end
Diagnostics						

For the entire collection, the natural counterpart of the discrepancy is the Mahalanobis distance:

$$\operatorname{Dis}(d) = (d - \operatorname{E}(D))^{\mathsf{T}}\operatorname{Var}(D)^{\dagger}(d - \operatorname{E}(D)).$$

• The prior expected value of Dis(d) is given by $E(Dis(d)) = \mathsf{rk}\{Var(D)\}$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 00●	Further Topics 000000000	The end
Diagnostics						

For the entire collection, the natural counterpart of the discrepancy is the Mahalanobis distance:

$$\operatorname{Dis}(d) = (d - \operatorname{E}(D))^{\mathsf{T}}\operatorname{Var}(D)^{\dagger}(d - \operatorname{E}(D)).$$

- The prior expected value of Dis(d) is given by E(Dis(d)) = rk{Var(D)}
- NB: if we pretend D is Normal, then Dis(d) would be χ^2

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 00●	Further Topics 000000000	The end
Diagnostics						

For the entire collection, the natural counterpart of the discrepancy is the Mahalanobis distance:

$$\operatorname{Dis}(d) = (d - \operatorname{E}(D))^{ au} \operatorname{Var}(D)^{\dagger} (d - \operatorname{E}(D)).$$

- The prior expected value of Dis(d) is given by $E(Dis(d)) = \mathbf{rk} \{ Var(D) \}$
- NB: if we pretend D is Normal, then Dis(d) would be χ^2
- We can then normalise the discrepancy, to obtain the discrepancy ratio for d

$$\operatorname{Dr}(d) = \frac{\operatorname{Dis}(d)}{\mathsf{rk}\{\operatorname{Var}(D)\}},$$

which has prior expectation E(Dr(d)) = 1.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 00●	Further Topics 000000000	The end
Diagnostics						

For the entire collection, the natural counterpart of the discrepancy is the Mahalanobis distance:

$$\operatorname{Dis}(d) = (d - \operatorname{E}(D))^{ au} \operatorname{Var}(D)^{\dagger} (d - \operatorname{E}(D)).$$

- The prior expected value of Dis(d) is given by $E(Dis(d)) = \mathsf{rk}\{Var(D)\}$
- NB: if we pretend D is Normal, then Dis(d) would be χ^2
- We can then normalise the discrepancy, to obtain the discrepancy ratio for d

$$\operatorname{Dr}(d) = rac{\operatorname{Dis}(d)}{\mathsf{rk}\{\operatorname{Var}(D)\}},$$

which has prior expectation E(Dr(d)) = 1.

• Large Dr(d) will of course also suggest inconsistencies.

Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end

Further Topics

Further Topics

Jonathan Cumming, Ian Vernon Introduction to Bayes Linear Statistics ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 000	Further Topics	The end
Canonical Analys	is					

Canonical Analysis

Ξ.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics	The end
Canonical Analy	ysis					

 Our belief specification for B and our adjustment by D implies specifications and adjustments for all linear combinations in (B).

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 0●0000000	The end
Canonical Analy	/sis					

- Our belief specification for B and our adjustment by D implies specifications and adjustments for all linear combinations in (B).
- We can explore the (possibly complex) changes in beliefs about (B) induced by the adjustment via a canonical analysis

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 0●0000000	The end
Canonical Analy	/sis					

- Our belief specification for B and our adjustment by D implies specifications and adjustments for all linear combinations in (B).
- We can explore the (possibly complex) changes in beliefs about (B) induced by the adjustment via a canonical analysis
- A key component of the canonical analysis is the resolution transform matrix defined as

 $\mathbb{T}_{B:D} = \operatorname{Var}(B)^{\dagger} \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}(D, B).$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 0●0000000	The end
Canonical Analy	ysis					

- Our belief specification for B and our adjustment by D implies specifications and adjustments for all linear combinations in (B).
- We can explore the (possibly complex) changes in beliefs about (B) induced by the adjustment via a canonical analysis
- A key component of the canonical analysis is the resolution transform matrix defined as

$$\mathbb{T}_{B:D} = \operatorname{Var}(B)^{\dagger} \operatorname{Cov}(B, D) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}(D, B).$$

• $\mathbb{T}_{B:D}$ has the property that $\operatorname{Var}(B)\mathbb{T}_{B:D} = \operatorname{RVar}_D(B)$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 0●0000000	The end
Canonical Analy	ysis					

- Our belief specification for B and our adjustment by D implies specifications and adjustments for all linear combinations in (B).
- We can explore the (possibly complex) changes in beliefs about (B) induced by the adjustment via a canonical analysis
- A key component of the canonical analysis is the resolution transform matrix defined as

 $\mathbb{T}_{B:D} = \operatorname{Var}(B)^{\dagger} \operatorname{Cov}\left(B, D\right) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}\left(D, B\right).$

- $\mathbb{T}_{B:D}$ has the property that $\operatorname{Var}(B)\mathbb{T}_{B:D} = \operatorname{RVar}_D(B)$
- The eigenstructure of $\mathbb{T}_{B:D}$ summarises all the effects of belief adjustment

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 000	Further Topics 0●0000000	The end	
Canonical Analysis							

- Our belief specification for B and our adjustment by D implies specifications and adjustments for all linear combinations in (B).
- We can explore the (possibly complex) changes in beliefs about (B) induced by the adjustment via a canonical analysis
- A key component of the canonical analysis is the resolution transform matrix defined as

 $\mathbb{T}_{B:D} = \operatorname{Var}(B)^{\dagger} \operatorname{Cov}\left(B, D\right) \operatorname{Var}(D)^{\dagger} \operatorname{Cov}\left(D, B\right).$

- $\mathbb{T}_{B:D}$ has the property that $\operatorname{Var}(B)\mathbb{T}_{B:D} = \operatorname{RVar}_D(B)$
- The eigenstructure of $\mathbb{T}_{B:D}$ summarises all the effects of belief adjustment

3

• Let the normed right eigenvectors of $\mathbb{T}_{B:D}$ be v_1, \ldots, v_{r_B} , ordered by eigenvalues $1 \ge \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_{r_B} \ge 0$ and scaled as $v_i^T \operatorname{Var}(B) v_i = 1$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 00●000000	The end
Canonical Analy	sis					

• We define the *i*th canonical direction as

$$Y_i = v_i^T (B - E(B))$$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 00●000000	The end
Canonical Analy	/sis					

We define the *i*th canonical direction as

$$Y_i = v_i^T (B - E(B))$$

The canonical directions have the following properties

$$\begin{split} \mathrm{E}(Y_i) &= 0, \quad \mathrm{Var}(Y_i) = 1, \quad \mathrm{Corr}\left(Y_i, Y_j\right) = 0\\ \mathrm{RVar}_D(Y_i) &= \lambda_i, \quad \mathrm{Var}_D(Y_i) = 1 - \lambda_i, \end{split}$$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 00●000000	The end
Canonical Analy	/sis					

We define the *i*th canonical direction as

$$Y_i = v_i^T (B - E(B))$$

The canonical directions have the following properties

$$\begin{split} \mathrm{E}(Y_i) &= 0, \quad \mathrm{Var}(Y_i) = 1, \quad \mathrm{Corr}\left(Y_i, Y_j\right) = 0\\ \mathrm{RVar}_D(Y_i) &= \lambda_i, \quad \mathrm{Var}_D(Y_i) = 1 - \lambda_i, \end{split}$$

■ So the collection {*Y*₁, *Y*₂,...} forms a mutually uncorrelated 'grid' of directions over ⟨*B*⟩, summarizing the effects of the adjustment.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 00●000000	The end
Canonical Analy	/sis					

F

We define the *i*th canonical direction as

$$Y_i = v_i^T (B - E(B))$$

The canonical directions have the following properties

$$E(Y_i) = 0, \quad Var(Y_i) = 1, \quad Corr(Y_i, Y_j) = 0$$

$$RVar_D(Y_i) = \lambda_i, \quad Var_D(Y_i) = 1 - \lambda_i,$$

- So the collection {*Y*₁, *Y*₂,...} forms a mutually uncorrelated 'grid' of directions over ⟨*B*⟩, summarizing the effects of the adjustment.
- Y₁ is the quantity we learn most about. Y₂ is the quantity we learn next most about, given that it is uncorrelated with Y₁.
 Y_{rk{B}} is the quantity we learn least about.
- Relationship to canonical correlation analysis (and PCA)

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation 000	Diagnostics 000	Further Topics	The end
Canonical Analy	rsis					

Canonical properties and system resolution

• Each $X \in \langle B \rangle$ can be expressed using the canonical structure as

$$egin{aligned} X - \mathrm{E}(X) &= \sum_i \mathrm{Cov}\left(X, Y_i
ight)Y_i, \ \mathbf{A} &= \sum_i \lambda_i (\mathrm{Corr}\left(X, Y_i
ight))^2. \end{aligned}$$

▲ロ → ▲ 圖 → ▲ 画 → ▲ 国 → ▲ 回 →

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics	The end
Canonical Analy	/sis					

Canonical properties and system resolution

• Each $X \in \langle B \rangle$ can be expressed using the canonical structure as

$$X - E(X) = \sum_{i} Cov(X, Y_i) Y_i,$$

and $RVar_D(X) = \sum \lambda_i (Corr(X, Y_i))^2$

We can use this structure to express the resolved uncertainty for the entire collection (B) given adjustment by D via the resolved uncertainty and the system resolution

$$\operatorname{RU}_D(B) = \sum_i \lambda_i, \qquad \operatorname{R}_D(B) = \frac{1}{\mathsf{rk}\{B\}} \sum_i \lambda_i$$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics	The end	
Canonical Analysis							

Canonical properties and system resolution

а

• Each $X \in \langle B \rangle$ can be expressed using the canonical structure as

$$X - \operatorname{E}(X) = \sum_{i} \operatorname{Cov} (X, Y_i) Y_i,$$

nd $\operatorname{RVar}_D(X) = \sum \lambda_i (\operatorname{Corr} (X, Y_i))^2$

We can use this structure to express the resolved uncertainty for the entire collection (B) given adjustment by D via the resolved uncertainty and the system resolution

$$\operatorname{RU}_{D}(B) = \sum_{i} \lambda_{i}, \qquad \operatorname{R}_{D}(B) = \frac{1}{\mathsf{rk}\{B\}} \sum_{i} \lambda_{i}$$

a R_D(B) is a scalar summary of the effectiveness of the adjustment by D for the entire collection $\langle B \rangle$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics ○○○●○○○○	The end
Partial Analysis						

Partial Analysis

・ロト ・回ト ・ヨト ・ヨト

2

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics ○○○○○●○○○	The end
Partial Analysis						

- Suppose we have already adjusted out beliefs about B given data, D
 - Now suppose we get even more data *F*, how should we further adjust our beliefs about *B*?

A (1) > A (1) > A

3 x 3

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics 00000●000	The end
Partial Analysis						

- Suppose we have already adjusted out beliefs about B given data, D
 - Now suppose we get even more data *F*, how should we further adjust our beliefs about *B*?
- Suppose we have already adjusted our beliefs about *B* given data, $H = D \cup F$
 - What were the individual effects of adjusting by *D* or *F*?

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics ○○○○○●○○○	The end
Partial Analysis						

- Suppose we have already adjusted out beliefs about B given data, D
 - Now suppose we get even more data *F*, how should we further adjust our beliefs about *B*?
- Suppose we have already adjusted our beliefs about B given data, H = D ∪ F
 - What were the individual effects of adjusting by *D* or *F*?
- To answer either of these questions would require a partial analysis, where we consider the effects of subsets of the data on our beliefs

Introduction	Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end
00000	00000	0000000	000	000	○○○○○●○○	
Partial Analysis						

If we adjust beliefs sequentially, then we can separate and scrutinize the adjustments at each stage

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics ○○○○○●○○	The end
Partial Analysis						

- If we adjust beliefs sequentially, then we can separate and scrutinize the adjustments at each stage
- We evaluate partial adjustments which represent the change in adjustment as we accumulate data.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics ○○○○○●○○	The end
Partial Analysis						

- If we adjust beliefs sequentially, then we can separate and scrutinize the adjustments at each stage
- We evaluate partial adjustments which represent the change in adjustment as we accumulate data.
- Suppose we intend to adjust our beliefs about B by observations on D and F, we adjust B by (D ∪ F) but separate the effects of the subsets by adjusting B in stages, first by D, then adding F (or vice versa)

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics ○○○○○●○○	The end
Partial Analysis						

- If we adjust beliefs sequentially, then we can separate and scrutinize the adjustments at each stage
- We evaluate partial adjustments which represent the change in adjustment as we accumulate data.
- Suppose we intend to adjust our beliefs about B by observations on D and F, we adjust B by (D ∪ F) but separate the effects of the subsets by adjusting B in stages, first by D, then adding F (or vice versa)
- How do we separate the effects of *D* and *F* on *B*?

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation	Diagnostics 000	Further Topics ○○○○○○○●○	The end
Partial Analysis						

Separating things out

If D ⊥⊥ F, then adjusted expectations are additive so
 E_{D∪F}(B − E(B)) = E_D(B − E(B)) + E_F(B − E(B))

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics ○○○○○○○●○	The end
Partial Analysis						

Separating things out

• If $D \perp\!\!\perp F$, then adjusted expectations are additive so

 $E_{D\cup F}(B - E(B)) = E_D(B - E(B)) + E_F(B - E(B))$

If D and F are correlated, then we obtain a similar expression by removing the 'common variability' between F and D.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics ○○○○○○○●○	The end
Partial Analysis						

Separating things out

• If $D \perp F$, then adjusted expectations are additive so

 $E_{D\cup F}(B - E(B)) = E_D(B - E(B)) + E_F(B - E(B))$

- If D and F are correlated, then we obtain a similar expression by removing the 'common variability' between F and D.
- For any D, F, the vectors D and A_F(D) = F E_D(F) are uncorrelated.
- So, for any *D*, *F*

$$\operatorname{E}_{D\cup F}(B - \operatorname{E}(B)) = \operatorname{E}_{D}(B - \operatorname{E}(B)) + \operatorname{E}_{\mathbb{A}_{F}(D)}(B - \operatorname{E}(B))$$

Introduction	Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end
00000	00000	0000000	000	000	○○○○○○○●	
Partial Analysis						

The partial adjustment

• The partial adjustment of *B* by *F* given *D*, denoted $E_{[F/D]}(B)$, is

$$\operatorname{E}_{[F/D]}(B) = \operatorname{E}_{D \cup F}(B) - \operatorname{E}_{D}(B) = \operatorname{E}_{\mathbb{A}_{F}(D)}(B - \operatorname{E}(B))$$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics ○○○○○○○○	The end
Partial Analysis						

The partial adjustment

• The partial adjustment of *B* by *F* given *D*, denoted $E_{[F/D]}(B)$, is

$$\operatorname{E}_{[F/D]}(B) = \operatorname{E}_{D\cup F}(B) - \operatorname{E}_{D}(B) = \operatorname{E}_{\mathbb{A}_{F}(D)}(B - \operatorname{E}(B))$$

• We can partition the variance in several ways $Var(B) = RVar_D(B) + Var_D(B)$ $= RVar_D(B) + RVar_{[F/D]}(B) + Var_{D\cup F}(B)$ $= RVar_{D\cup F}(B) + Var_{D\cup F}(B)$

Introduction 00000	Bayes linear 00000	Bayes Linear Inference 0000000	Interpretation	Diagnostics 000	Further Topics ○○○○○○○○	The end
Partial Analysis						

The partial adjustment

• The partial adjustment of *B* by *F* given *D*, denoted $E_{[F/D]}(B)$, is

$$\operatorname{E}_{[F/D]}(B) = \operatorname{E}_{D\cup F}(B) - \operatorname{E}_{D}(B) = \operatorname{E}_{\mathbb{A}_{F}(D)}(B - \operatorname{E}(B))$$

• We can partition the variance in several ways $\operatorname{Var}(B) = \operatorname{RVar}_{D}(B) + \operatorname{Var}_{D}(B)$ $= \operatorname{RVar}_{D}(B) + \operatorname{RVar}_{[F/D]}(B) + \operatorname{Var}_{D\cup F}(B)$ $= \operatorname{RVar}_{D\cup F}(B) + \operatorname{Var}_{D\cup F}(B)$

The partial resolved variance matrix of B by F given D is

$$\operatorname{RVar}_{[F/D]}(B) = \operatorname{Var}(\operatorname{E}_{[F/D]}(B))$$

Bayes linear	Bayes Linear Inference	Interpretation	Diagnostics	Further Topics	The end

The end

The end

・ロト ・回ト ・ヨト ・ヨト

э.

Introduction 00000	Bayes linear 00000	Bayes Linear Inference	Interpretation 000	Diagnostics 000	Further Topics 000000000	The end

The end

We have seen:

- How we represent our beliefs using expectation as primitive
- How we would update our beliefs the BL adjustment
- How we can investigate potential problems in our belief specification – diagnostics
- How we can understand how our beliefs are affected by the data – canonical analysis
- How we would incorporate additional information partial analysis