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Abstract Nonparametric predictive inference (NPI) is a powerful frequentist
statistical framework which uses only few assumptions. Based on a post-data
exchangeability assumption, precise probabilities for some events involving
one or more future observations are defined, based on which lower and upper
probabilities can be derived for all other events of interest. We present NPI
for the r-th order statistic of m future real-valued observations and its use
for comparison of two groups of data.

1 Introduction

Nonparametric predictive inference (NPI) [3, 5] is a statistical framework
which uses few modelling assumptions, with inferences explicitly in terms
of future observations. For real-valued random quantities attention has thus
far been mostly restricted to a single future observation, although multiple
future observations have been considered for some NPI methods for statistical
process control [1, 2]. For Bernoulli quantities, NPI has also been presented
for m ≥ 1 future observations [4], with explicit study of the influence of the
choice of m for comparison of groups of proportions data [6].

In this paper, we considerm future real-valued observations, given n obser-
vations, and as main contribution we focus on the r-th ordered observation of
these m future observations, including comparison of two groups of data via
comparison of their corresponding r-th ordered future observations. Without
making further assumptions, these inferences require the use of lower and
upper probabilities for several events of interest, as such this work fits in the
theory of imprecise probability [12] and interval probability [13].
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Assume that we have real-valued ordered data x1 < x2 < . . . < xn, with
n ≥ 1. We assume that ties do not occur, in Example 2 in Section 3 we explain
how to deal with ties. For ease of notation, define x0 = −∞ and xn+1 = ∞.
The n observations partition the real-line into n+1 intervals Ij = (xj−1, xj)
for j = 1, . . . , n + 1. If we wish to allow ties between past and future ob-
servations explicitly, we could use closed intervals [xj−1, xj ] instead of these
open intervals Ij , the difference is rather minimal and to keep presentation
easy we have opted not to do this here. We are interested in m ≥ 1 future
observations, Xn+i for i = 1, . . . ,m. We link the data and future observa-
tions via Hill’s assumption A(n) [10], or, more precisely, via A(n+m−1) (which
implies A(n+k) for all k = 0, 1, . . . ,m− 2; we will refer to this generically as
’the A(n) assumptions’), which can be considered as a post-data version of
a finite exchangeability assumption for n +m random quantities. A(n+m−1)

implies that all possible orderings of the n data observations and the m fu-
ture observations are equally likely, where the n data observations are not
distinguished among each other, and neither are the m future observations.
Let Sj = #{Xn+i ∈ Ij , i = 1, . . . ,m}, then assuming A(n+m−1) we have

P (
n+1
⋂

j=1

{Sj = sj}) =

(

n+m

n

)

−1

(1)

where sj are non-negative integers with
∑n+1

j=1 sj = m. Another convenient
way to interpret the A(n+m−1) assumption with n data observations and m

future observations is to think that n randomly chosen observations out of
all n + m real-valued observations are revealed, following which you wish
to make inferences about the m unrevealed observations. The A(n+m−1) as-
sumption then implies that one has no information about whether specific
values of neighbouring revealed observations make it less or more likely that
a future observation falls in between them. For any event involving the m

future observations, (1 implies that we can count the number of such order-
ings for which this event holds. Generally in NPI a lower probability for the
event of interest is derived by counting all orderings for which this event has
to hold, while the corresponding upper probability is derived by counting all
orderings for which this event can hold [3, 5].

NPI is close in nature to predictive inference for the low structure stochas-
tic case as briefly outlined by Geisser [9], which is in line with many earlier
nonparametric test methods where the interpretation of the inferences is in
terms of confidence intervals. In NPI the A(n) assumptions justify the use
of these inferences directly as probabilities. Using only precise probabilities
or confidence statements, such inferences cannot be used for many events of
interest, but in NPI we use the fact, in line with De Finetti’s Fundamental
Theorem of Probability [7], that corresponding optimal bounds can be de-
rived for all events of interest [3]. NPI provides exactly calibrated frequentist
inferences [11], and it has strong consistency properties in theory of interval
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probability [3]. In NPI the n observations are explicitly used through the
A(n) assumptions, yet as there is no use of conditioning as in the Bayesian
framework, we do not use an explicit notation to indicate this use of the data.
It is important to emphasize that there is no assumed population from which
the n observations were randomly drawn, and hence also no assumptions on
the sampling process. NPI is totally based on the A(n) assumptions, which
however should be considered with care as they imply e.g. that the specific
ordering in which the data appeared is irrelevant, so accepting A(n) implies
an exchangeability judgement for the n observations. It is attractive that
the appropriateness of this approach can be decided upon after the n obser-
vations have become available. NPI is always in line with inferences based
on empirical distributions, which is an attractive property when aiming at
objectivity [5].

2 NPI for order statistics

Let X(r), for r = 1, . . . ,m, be the r-th ordered future observation, so X(r) =
Xn+i for one i = 1, . . . ,m and X(1) < X(2) < . . . < X(m). The following
probabilities are derived by counting the relevant orderings, and hold for
j = 1, . . . , n+ 1, and r = 1, . . . ,m,

P (X(r) ∈ Ij) =

(

j + r − 2

j − 1

)(

n− j + 1 +m− r

n− j + 1

)(

n+m

n

)

−1

(2)

For this event NPI provides a precise probability, as each of the
(

n+m
n

)

equally
likely orderings of n past and m future observations has the r-th ordered
future observation in precisely one interval Ij .

As an example, suppose that one is interested in the minimum X(1) of the

m future observations. Formula (2) gives P (X(1) ∈ Ij) =
(

n−j+m
n−j+1

)(

n+m
n

)−1
,

with for example P (X(1) ∈ I1) =
m

n+m
. Clearly, the event X(1) ∈ I1 occurs if

the smallest of all n+m observations, so the n data observations andm future
observations, is not in the data set, which would occur with probability n

n+m
.

A further special case of interest is P (X(1) ∈ In+1) =
(

n+m
n

)−1
, following from

the fact that there is only one ordering for which all n data observations occur
before all m future observations.

In theory of mathematical statistics and probability, much attention is
paid to limit results. Many popular statistical methods are justified through
limit properties, with limits taken with regard to the number n of data ob-
servations, leading to ’large-sample’ methods that are often applied in cases
with relatively small samples without due consideration of the quality of the
approximations involved and lacking clear foundational justification. Consid-
ering limits for n going to infinity is not very exciting in NPI as one just
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ends up with the empirical distribution function and corresponding infer-
ences. However, in NPI it might be of some interest to consider the limiting
behaviour of the predictive probabilities (2) if m goes to infinity, hence if we
consider an ever increasing future. Defining θ ∈ [0, 1] through the relation-
ship r = θm (of course, this only makes sense when θm, and therefore also
(1 − θ)m, is integer, we only sketch the argument here without giving the
detailed mathematical presentation), the following limiting result is easily
proven, for j = 1, . . . , n+ 1,

lim
m→∞

P (X(θm) ∈ Ij) =

(

n

j − 1

)

θj−1(1− θ)n−j+1 (3)

It is important to emphasize the difference with established statistical meth-
ods. The θ in (3) is not a characteristic of an assumed population from which
the data are sampled, indeed no population assumption is made. Further-
more, (3) is not a probability distribution nor a likelihood function for θ.
Instead, θ only serves for notation of this event of interest, and indicates the
specific relative (with regard tom) future order statistic of interest. Of course,
the actual A(n) assumptions required for this limit imply infinite exchange-
ability of the future observations, hence De Finetti’s Representation Theorem
[7] indicates that a parametric representation can be assumed, yet this is dif-
ferent from the explicitly predictive use in NPI, most noticeably through the
absence of a probability distribution for θ. The limiting probability (3) can
be understood from the consideration that for the event X(θm) ∈ Ij to hold,
precisely j − 1 of the n data observations must be smaller than X(θm), but
it must be emphasized again that (3) specified probabilities for X(θm), not
for any aspect of the observed data for which no concept of randomness,
e.g. as following from assumed sampling from a population, is used in NPI.
In NPI, the data are given, all randomness is explicitly with regard to the
future observations, which nicely reflects where the uncertainty really is in
applications.

Analysis of the probability (2) leads to some interesting results, including
the obvious symmetry P (X(r) ∈ Ij) = P (X(m+1−r) ∈ In+2−j). For all r, the
probability for X(r) ∈ Ij is unimodal in j, with the maximum probability

assigned to interval Ij∗ with
(

r−1
m−1

)

(n+ 1) ≤ j∗ ≤
(

r−1
m−1

)

(n+ 1) + 1. This

carries through to the limiting situation (3), where for given θ the maximum
probability is assigned to interval Ij∗ with (n+1)θ ≤ j∗ ≤ (n+1)θ+1. It is
worth commenting on extreme values, in particular inference involving X(1)

or X(m) for m large compared to the value of n. In these cases, NPI assigns
large probabilities to the intervals I1 or In+1, respectively, which are outside
the range of the observed data and unbounded unless the random quantities
of interest are logically bounded (e.g. zero as lower bound for lifetime data).
This indicates that, for such inferences, very little can be concluded without
further assumptions on the probability masses within these end intervals
beyond the observed data. This will be illustrated in the examples in Section
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3. There are several inferential problems where one is explicitly interested in
such a future order statistic X(r). It may be of explicit interest to compare
different groups or treatments by comparing particular future order statistics,
this is presented in Section 3.

3 Comparing two groups

Suppose we have two independent groups of real-valued observations, X and
Y , their ordered observed values are x1 < x2 < . . . < xnx

and y1 < y2 <

. . . < yny
. For ease of notation, let x0 = y0 = −∞ and xnx+1 = yny+1 = ∞.

And let Ixjx = (xjx−1, xjx) and I
y
jy

= (yjy−1, yjy ). We are interested in m ≥ 1

future observations from each group (i.e. mx = my = m), so in Xnx+i and
Yny+i for i = 1, . . . ,m. We wish to compare the r-th future order statistics
from these two groups by considering the event X(r) < Y(r), for which the
NPI lower and upper probabilities, based on the A(nx) and A(ny) assumptions
per group, are derived by

P (X(r) < Y(r)) =

nx+1
∑

jx=1

ny+1
∑

jy=1

1{xjx < yjy−1}P (X(r) ∈ Ixjx)P (Y(r) ∈ I
y
jy
) (4)

P (X(r) < Y(r)) =

nx+1
∑

jx=1

ny+1
∑

jy=1

1{xjx−1 < yjy}P (X(r) ∈ Ixjx)P (Y(r) ∈ I
y
jy
) (5)

where 1{E} is an indicator function which is equal to 1 if event E oc-
curs and 0 else. This NPI lower (upper) probability follows by putting all
probability masses for Y(r) corresponding to the intervals I

y
jy

= (yjy−1, yjy ),

jy = 1, . . . , ny + 1, to the left (right) end points of these intervals, and
by putting all probability masses for X(r) corresponding to the intervals
Ixjx = (xjx−1, xjx), jx = 1, . . . , nx+1, to the right (left) end points of these in-
tervals. We illustrate this NPI method for comparison of two groups based on
the r-th future order statistic in two examples, first a small artificial example
followed by one considering a real data set.

Example 1. To get a basic feeling for these inferences, we consider three small
artificial data sets (cases A,B,C) as given in Table 1. For m = 5, 25, 200,
the NPI lower and upper probabilities for the events X(r) < Y(r) for all r =
1, . . . ,m are displayed in Fig. 1, with row 1,2,3 corresponding to cases A,B,C.
Actually, the plotted lines per value of r represent the intervals bounded by
the corresponding lower and upper probabilities, so the length of each line is
the imprecision for that event.

These results illustrate clearly the effect of increased sample sizes, lead-
ing to decreasing imprecision for future order statistics that are most likely
to fall within the observed data range. For extreme future order statistics,
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Table 1 Data sets, Example 1

A X: 1 4 Y : 2 3
B X: 1 2 7 8 Y : 3 4 5 6
C X: 1 2 3 4 13 14 15 16 Y : 5 6 7 8 9 10 11 12

A

B

C

0.0 0.4 0.8

1
2

3
4

5

m= 5

Lower and Upper probabilites

r

0.0 0.4 0.8

5
15

25

m= 25

Lower and Upper probabilites

r
0.0 0.4 0.8

0
50

15
0

m= 200

Lower and Upper probabilites

r
0.0 0.4 0.8

1
2

3
4

5

m= 5

Lower and Upper probabilites

r

0.0 0.4 0.8

5
15

25

m= 25

Lower and Upper probabilites

r

0.0 0.4 0.8

0
50

15
0

m= 200

Lower and Upper probabilites

r

0.0 0.4 0.8

1
2

3
4

5

m= 5

Lower and Upper probabilites

r

0.0 0.4 0.8

5
15

25

m= 25

Lower and Upper probabilites

r

0.0 0.4 0.8

0
50

15
0

m= 200

Lower and Upper probabilites

r

Fig. 1 NPI lower and upper probabilities, Example 1

imprecision remains high as no assumptions are made about the spread of
probability mass within any interval Ixjx or Iyjy , so also not in the end intervals.
This makes clear that, without additional assumptions, no strong inferences
can be achieved for events involving extreme future order statistics if m is
substantially larger than n.

Example 2. We consider the data set of a study of the effect of ozone en-
vironment on rats growth [8, p.170]. One group of 22 rats were kept in an
ozone environment and the second group of 23 similar rats were kept in an
ozone-free environment. Both groups were kept for 7 days and their weight
gains are given in Table 2.

The NPI lower and upper probabilities (4) and (5) for the events X(r) <

Y(r), r = 1, . . . ,m, are displayed in Fig. 2, where the first row gives figures
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Table 2 Rats’ weight gains data, Example 2

Ozone group (X) Ozone-free group (Y )

-15.9 -14.7 -12.9 -9.9 -9.0 -9.0 -16.9 13.1 15.4 17.4 17.7 18.3
6.1 6.6 6.8 7.3 10.1 12.1 19.2 21.4 21.8 21.9 22.4 22.7
14.0 14.3 15.5 15.7 17.9 20.4 24.4 25.9 26.0 26.0 26.6 27.3
28.2 39.9 44.1 54.6 27.4 28.5 29.4 38.4 41.0

corresponding to the full data for the cases with m = 5, 25, 200, while the
second row gives the corresponding figures but with the observation −16.9
removed from group Y . This is done as this value could perhaps be considered
to be an outlier, hence it might be interesting to see its influence on these
inferences. Note that the data for group X and for group Y both contain two
tied observations, at −9.0 and 26.0, respectively. As tied observations are
within the same group, we just add a very small amount to one of them, not
affecting their rankings within the group nor with the data for both groups
combined and therefore not affecting the inferences. This can be interpreted
as assuming that these values actually differ in a further decimal, not reported
due to rounding. If observations where tied among the two groups, the same
breaking of ties could be performed, with the NPI method presented in this
paper applied to all possible ways to do so, and the smallest (largest) of the
corresponding lower (upper) probabilities for the event of interest would be
used as the NPI lower (upper) probability. The possibility to break ties in
this manner is an attractive feature of statistical methods using lower and
upper probabilities, as it does not require further assumptions for such tied
values.

This example shows that these data strongly support the event X(r) < Y(r)

for future order statistics that are likely to be in the middle area of the data
ranges, with the values of the NPI lower and upper probabilities reflecting
the amount of overlap in the observed data for groups X and Y . For extreme
future order statistics the imprecision is again very large, and the effect of
deleting the smallest Y value from the data has caused quite a difference
between the inferences for small values of r, as the lower ends of the plots in
rows 1 and 2 in Fig. 2 clearly illustrate.
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Fig. 2 NPI lower and upper probabilities, Example 2
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