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Credal Networks

• Extend Bayesian nets to the imprecise 
setting.

• Knowledge is represented qualitatively by 
an interaction graph, and quantitatively by a 
collection of credal sets.

• Applications: e.g. expert systems, classifiers.



Credal Networks

• Use of imprecise probabilities leads to 
computational difficulties.

• Inferences in CNs are NP-hard even in 
cases where their Bayesian counterpart is 
polynomial.

• Current approximate algorithms for 
computing with CNs do not provide any 
bounds on the error.



Extensive Specification

• We focus on extensively specified credal 
sets/networks.

• Credal sets are specified as sets of 
conditional probability tables.

• Results can be generalized to locally 
specified nets.



Example

A

B

C

c a b 0.2
~c a b 0.8
c ~a b 0.6
~c ~a b 0.4
c a ~b 0.8
~c a ~b 0.2
c ~a ~b 0.5
~c ~a ~b 0.5

a 0.3

~a 0.7

b 0.1

~b 0.9

b 0.7

~b 0.3

K(C|A,B)K(A)

K(B)

P1(C|A) P2(C|A)
P1(B) P2(B)

P1(A)

c a b 0.4
~c a b 0.6
c ~a b 0.5
~c ~a b 0.5
c a ~b 0.3
~c a ~b 0.7
c ~a ~b 0.5
~c ~a ~b 0.5



Potentials

• A potential P(U|V) is mapping from the 
possibility space of U and V to the set of 
nonnegative rational numbers.

• It “may” represent (conditional) probability 
functions p(U|v) for each v.

• They inherit algebraic properties from 
probabilities (c.f. valuation algebras).



Potentials

c a 0.2

~c a 0.8

c ~a 0.6

~c ~a 0.4

p(C|a)

p(C|~a)

c a 0.2

~c a 0.4

c ~a 0.3

~c ~a 0.1

p(d,C|a)

p(d,C|~a)

P(C|A) P(d,C|A)



Credal Sets
• We consider extensively specified credal 

sets.

• By abuse of terminology, we define a credal 
set K(U|V) as a finite set of potentials        
P(U|V).

• Equivalent to the extreme mass functions 
of a closed convex set of (precise) 
probability functions, where the choice of a 
cpf in a potential implies the choice of the 
others cpfs.



Credal Sets

• Let u be an element of the sample space of 
U, and v be an element of the sample space 
of V.

• K(u|v) denotes a set of probabilities p(u|v).



Example

a 0.3

~a 0.7

b 0.1

~b 0.9

b 0.7

~b 0.3

K(A) K(B)

P1(B) P2(B)P1(A)

K(~a) = {0.7}

K(b) = {0.1, 0.7}



Credal Networks

• Let X={X1,...,Xn} be a set of categorical  
random variables.

• Let G=(V,E) be a DAG where there is a 
node Vi for each Xi in X.

• Let K be a collection of credal sets           
K(Xi|pa(Xi)) for each Xi in X.

• A credal network is a pair CN=(G,K).



Example

A

B

C

c a b 0.2
~c a b 0.8
c ~a b 0.6
~c ~a b 0.4
c a ~b 0.8
~c a ~b 0.2
c ~a ~b 0.5
~c ~a ~b 0.5

a 0.3

~a 0.7

b 0.1

~b 0.9

b 0.7

~b 0.3

K(C|A,B)K(A)

K(B)

P1(C|A) P2(C|A)
P1(B) P2(B)

P1(A)

c a b 0.4
~c a b 0.6
c ~a b 0.5
~c ~a b 0.5
c a ~b 0.3
~c a ~b 0.7
c ~a ~b 0.5
~c ~a ~b 0.5



Algebra of Credal Sets

• Marginalization and multiplication 
operations generalizes marginalization and 
multiplication in probabilities.

• Operations in Credal sets are performed 
element-wise.



Algebra of Credal Sets

• K1 = {P1,P2}, K2 = {P3,P4},                      
K3 = K1*K2 = {P1P3,P1P4,P2P3,P2P4} 

• K(A) = ∑B K(A,B)                                                    
= { ∑B P(A,B): P(A,B) in K(A,B) }

• ∑B K(A|B)K(C|D) = K(C|D) ∑B K(A|B)



Inference in CNs

• Given a CN=(G,K) the strict (strong)  
extension is given by K(X) = ∏K(Xi|pa(Xi))

• Belief updating consists in computing 
marginals conditional on evidence

• K(Q|E) = ∑X\Q,E K(X) / ∑X\E K(X) 



Inference in CNs

• In particular, if E=∅

• K(Q) = ∑X\Q K(X)

• It is possible to map a belief updating 
problem with evidence into an equivalent 
belief updating problem with no evidence.



Inference in CNs

• For a given ordering X1,...,Xn

• K(Q) = ∑X1,...Xn\Q K(X)

• K(Q) = ∑X1,...Xn\Q ∏K(Xi|pa(Xi))

• Chosen ordering matters (a lot).



Bucket Elimination
• Assume an ordering X1,...,Xn of the 

variables in X.

• Start with an ordered partition           
bucket 1,...,bucket n of K.  

• bucket i contains all credal sets whose 
highest variable is Xi.

• Recursion: for i := n to 1, do:

• Compute K(U|V) = ∑Xi\Q ∏bucket i Kj and 
add it to the largest-index variable bucket.



Example

A

B

C
K(C|A,B)

K(A)

K(B)

G = ({A,B,C},{(A,C),(B,C)})

K = {K(A),K(B),K(C|A,B)}

K(C) ?



Example

A

B

C

bucket B bucket C bucket A

K(C|A,B)
K(A)

K(B)

ordering: B, C, A 

initialization:



Example

A

B

C

bucket B bucket C bucket A

K(C|A,B)
K(A)

ordering: B, C, A

recursion 1: K(C|B)=∑A K(A)K(C|A,B)

K(C|B)K(B)



Example

A

B

C

bucket B bucket C bucket A

K(C|A,B)
K(A)

K(C|B)

ordering: A, B, C

recursion 2:

K(B)
K(C|B)

∅



Example

A

B

C

bucket B bucket C bucket A

K(C|A,B)
K(A)

K(C|B)

ordering: A, B, C

recursion 3:

K(B)
K(C|B)

K(C)=∑B K(B)K(C|B)



Example

A

B

C Final computation:

K(C)=∑B K(B)∑A K(A)K(C|A,B)

|K(C)| = |K(B)|×|K(A)|×|K(C|A,B)| !!!



Inference

• Computing the marginal credal set is 
exponential in the number of potentials in 
K.

• Usually we are interested only in the 
extremes, not in the full credal set:

• min p(q) = min K(q)

• max p(q) = max K(q)



Pareto Dominance

• We say that a potential P1(X) Pareto 
dominates a potential P2(X) iff

• P1(x) ≥ P2(x), for all x, and

• P1(x) > P2(x), for some x.

• Notation: P1(X) > P2(X).



Pareto Set

• Given a credal set K(X)

• The Pareto set PS(X) is the set of non-
dominated potentials in K(X)

• PS(X) := { P(X) in K(X): there is no P’(X) 
in K(X) such that P’(X) > P(X) }.

• |PS(X)| ≤ |K(X)|.



Upper Probability

• The maxima can only be obtained at non 
dominated potentials:

• max p(q) = max K(q) = max PS(q)

• Equivalently for min p(q) with a small 
modification in Pareto dominance.



Results

• Let K(X) = ∑Z K(XZ)K(YZ).

• Theorem. PS(X) = PS(∑Z PS(XZ)PS(YZ))

• The “Pareto operation” is distributive.

• We can use this to reduce the size of the 
credal set propagated during bucket 
elimination.



Bucket Elimination
• Assume an ordering X1,...,Xn of the 

variables in X.

• Start with an ordered partition           
bucket 1,...,bucket n of K.  

• bucket i contains all credal sets whose 
highest variable is Xi instantiated at q.

• Recursion: for i := n to 1, do:

• Compute PS(U|V) = PS(∑Xi\Q ∏bucket i Kj) 
and add it to the largest-index variable 
bucket.



Example

A

B

C
K(C|A,B)

K(A)

K(B)

G = ({A,B,C},{(A,C),(B,C)})

K = {K(A),K(B),K(C|A,B)}

max K(c) = max PS(c) ?



Example

A

B

C

bucket B bucket C bucket A

K(c|A,B)
K(A)

K(B)

ordering: B, C, A 

initialization:



Example

A

B

C

bucket B bucket C bucket A

K(c|A,B)
K(A)

ordering: B, C, A

recursion 1: PS(c|B)=PS(∑A K(A)K(c|A,B))

PS(c|B)K(B)



Example

A

B

C

bucket B bucket C bucket A

K(c|A,B)
K(A)

PS(c|B)

ordering: A, B, C

recursion 2:

K(B)
PS(c|B)

∅



Example

A

B

C

bucket B bucket C bucket A

K(C|A,B)
K(A)

PS(C|B)

ordering: A, B, C

recursion 3:

K(B)
PS(c|B)

PS(c)=PS(∑B K(B)PS(c|B))



Example

A

B

C
Final computation:

PS(c) = PS(∑B K(B)PS(∑A K(A)PS(c|A,B)))    
= PS(∑B K(B)∑A K(A)K(c|A,B))

|PS(c)| ≤ |K(B)|×|K(A)|×|K(C|A,B)|



Inference

• Worst-case running time is still 
exponential.

• Preliminary experiments show algorithm to 
be efficient in practice.

• Conjecture: algorithm has polynomial 
expected running time (based on 
properties of Pareto sets).



ε-Pareto Dominance

• We say that a potential P1(X) ε-Pareto 
dominates a potential P2(X) iff

• P1(x) ≥ (1+ε)P2(x), for all x,

• ε > 0.

• Notation: P1(X) >ε P2(X).

• P1(X) almost dominates P2(X).



ε-Pareto Set

• Given a credal set K(X)

• The ε-Pareto set PSε(X) is a subset of K(X) 
such that for each potential P’(X) in K(X) 
not in PSε(X) there is some potential in PSε
(X) that ε-Pareto dominates P’(X).

• PSε(X) := { P(X) in K(X): there is no 
P’(X) in K(X) such that P’(X) >ε P(X) for 
all P(X)}.

• |PSε(X)| ≤ |K(X)|.



Results

• Let K(X)=K(Y)K(Z).

• Theorem. There is a PSε(X) that is size 
polynomial in |K(Y)| and |K(Z)| and in 1/ε 
(but not in |X|).

• Given a credal set, we can construct an ε-
pareto set in polynomial time.



Bucket Elimination
• Assume an ordering X1,...,Xn of the 

variables in X.

• Start with an ordered partition           
bucket 1,...,bucket n of K.  

• bucket i contains all credal sets whose 
highest variable is Xi instantiated at q.

• Recursion: for i := n to 1, do:

• Compute PSε(U|V) = PSε(∑Xi\Q ∏bucket i Kj) 
and add it to the largest-index variable 
bucket.



Results

• Theorem. Bucket elimination with ε-
Pareto set propagation is an FPTAS.

• max p(q) ≤ (1+ε) max PSε(q)



Future

• Experiments (w/ both exact and approx.).

• Complexity results for exact.

• Selecting good orderings (not like the 
Bayesian case).

• Different queries (maximality, e-
admissibility, maximin).



Questions?


